Eigenvalue problems of non self-adjoint equation in the field of the ship hydrodynamics and its application to the optimum discretization method
船舶水动力领域非自伴方程特征值问题及其在最优离散化方法中的应用
基本信息
- 批准号:19560796
- 负责人:
- 金额:$ 2.08万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On the viscous fluid, Karman-Millikan's integral equations on the momentum loss in boundary layer and wake field were investigated from the viewpoint of the eigenfunction expansion. The kernel function were expanded by using the eigenfunction of the linearlized boundary layer equation. As a result, the integral equation wase discretized to infinite number of integral relations. Those ware equivalent to the Weighted residual equations weighted by the adjoint eigenfunctions. Coordinate straining method was developed and good results were obtained. Variational principle on the coordinate straining function was shown. On the wave field, new method of the separation of independent variables was presented. The free wave behind a ship was represented by the two Airy's functions.
对于粘性流体,从本征函数展开的角度研究了边界层动量损失和尾流场的卡门密立根积分方程。利用线性化边界层方程的特征函数对核函数进行了展开。结果,积分方程被离散化为无限个积分关系。这些相当于由伴随特征函数加权的加权残差方程。开发了坐标应变方法并取得了良好的效果。给出了坐标应变函数的变分原理。在波场上,提出了分离自变量的新方法。船后的自由波由两个艾里函数表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
伴流を含む層流境界層方程式の積分方程式化とその固有関数展開法, 松村清重, 斎藤良裕
含尾流的层流边界层方程的积分方程及其本征函数展开方法,Kiyoshige Matsumura,Yoshihiro Saito
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:杉村友生;岸一大
- 通讯作者:岸一大
Free Surface Measurement by Reflected Light Image
通过反射光图像进行自由表面测量
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Sanada Y.;Toda Y.;Hamachi S.
- 通讯作者:Hamachi S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUMURA Kiyoshige其他文献
MATSUMURA Kiyoshige的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUMURA Kiyoshige', 18)}}的其他基金
Study on adjoint variational principles in ship hydrofynamics
船舶流体力学伴随变分原理研究
- 批准号:
11450382 - 财政年份:1999
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on performance evaluation method of a wing in surface effect
机翼表面效应性能评价方法研究
- 批准号:
08305039 - 财政年份:1996
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Personal System of Symbolic and Algebraic Computation in the Field of Ship Hydrodynamics
船舶水动力领域符号代数计算个人系统的研制
- 批准号:
06555297 - 财政年份:1994
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
Pertubational study on the flow field around a planing plate with splay phenomena
具有张开现象的滑行板周围流场的摄动研究
- 批准号:
06651077 - 财政年份:1994
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on representation for solutions to PDE by elliptic functions and the related problems
椭圆函数偏微分方程解的表示及相关问题的研究
- 批准号:
18K03374 - 财政年份:2018
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pursuit of explicit representation formula using elliptic and analysis of the global bifurcation structure
椭圆显式表示公式的追寻及全局分叉结构的分析
- 批准号:
15K04972 - 财政年份:2015
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of reproducing kernels to the Tikhonov regularization
再生核在吉洪诺夫正则化中的应用
- 批准号:
24540113 - 财政年份:2012
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on profiles and the global bifurcation structure by explicit representation formula using elliptic functions
利用椭圆函数显式表示公式研究轮廓和全局分叉结构
- 批准号:
24540221 - 财政年份:2012
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)