Study on the instability of Benjamin-Feir type concerned with nonlinear strongly dispersive systems
非线性强色散系统Benjamin-Feir型不稳定性研究
基本信息
- 批准号:19540232
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first order approximate solution of Fourier type is constructed for the Sine-Gordon equation, which is the typical example of strongly dispersive nonlinear system, and its instability of Benjamine-Feir type is clarified by Floquet theory. Furthermore, to clarify the instability phenomena of general strongly dispersive nonlinear system, to begin with, various methods of constructing first integrals have been developed for weakly dispersive nonlinear system such as nonlinear equations of KdV type. Moreover, the relations between the higher order stationary KdV equation and the trace formulas have been clarified, and it is uniformly proved that the rapidly decreasing Bargmann potentials and the periodic finite zonal potentials solve the higher order stationary KdV equations. Simultaneously, to find the dispersive property for the given microscopic system, a numerical method called Baby-Bathwater scheme is studied. On the one hand, mechanism of critical phenomena has been clarified for complex network system by numerical methods.
傅立叶类型的一阶近似解决方案是为正弦 - 戈登方程构建的,这是典型的分散非线性系统的典型例子,而曲quet理论则阐明了本杰明 - 芬类型类型的不稳定性。此外,为了阐明一般性分散非线性系统的不稳定性现象,首先,已经开发出各种构建第一积分的方法,用于弱色散非线性系统,例如KDV类型的非线性方程。此外,已经阐明了高阶固定kDV方程与痕量公式之间的关系,并且统一证明,迅速降低的Bargmann电位和周期性有限的Zonal势均解决了高阶固定式KDV方程。同时,为了找到给定显微镜系统的分散属性,研究了一种称为婴儿式水水方案的数值方法。一方面,通过数值方法为复杂的网络系统阐明了关键现象的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the first integrals 0f KdV equation and trace formulas of Deift-Trubowitz type
关于Deift-Trubowitz型一阶积分0f KdV方程和迹公式
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M. Ohmiya;Y. Yamamoto
- 通讯作者:Y. Yamamoto
Baby-Bathwater scheme-a bridge between macroscopic and microscopic description-
Baby-Bathwater方案-宏观与微观描述之间的桥梁-
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:磯野雅文;大宮眞弓
- 通讯作者:大宮眞弓
Networked Ising-Sznajd Models and the Stock Markets
网络化 Ising-Sznajd 模型和股票市场
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Nagao;M. Ohmiya;H. Yoshikawa
- 通讯作者:H. Yoshikawa
共 18 条
- 1
- 2
- 3
- 4
OHMIYA Mayumi的其他基金
An algebro-analytic study on the trace formulas associated with the linear ordinary differential operators and the nonlinear integrable systems
线性常微分算子和非线性可积系统的迹公式的代数分析研究
- 批准号:2354025523540255
- 财政年份:2011
- 资助金额:$ 2万$ 2万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study of the integrable systems in mathematical physics and applied analysis
数学物理可积系统研究及应用分析
- 批准号:1554021915540219
- 财政年份:2003
- 资助金额:$ 2万$ 2万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on the spectrum and the monodromy related to the algebro-geometric potentials
与代数几何势相关的谱和单峰性研究
- 批准号:1364019513640195
- 财政年份:2001
- 资助金额:$ 2万$ 2万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似海外基金
An algebro-analytic study on the trace formulas associated with the linear ordinary differential operators and the nonlinear integrable systems
线性常微分算子和非线性可积系统的迹公式的代数分析研究
- 批准号:2354025523540255
- 财政年份:2011
- 资助金额:$ 2万$ 2万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)