Study on collision phenomena of blow-up points appear in Liouville systems and those of vortices

刘维尔系统中爆炸点与涡旋碰撞现象的研究

基本信息

  • 批准号:
    19540222
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

I studied the mean field equation of vortices with mixed intensities, which is one important example of Liouville systems and got "a mass identity" as a basic fact to classify the collisions of the blow-up points. In addition, I established technique to estimate the Morse index of the critical point about the certain functional that could not assume the Palais-Smale condition including the functionals that lead Liouville systems. Furthermore, I showed a property about the structure around the critical point called "the asymptotic non-degeneracy" about the functionals relating to the scalar Liouville systems (i.e., the Liouville type equations).
我研究了具有混合强度的涡流的平均场方程,这是liouville系统的一个重要例子,并获得了“质量身份”,作为对爆炸点的碰撞进行分类的基本事实。此外,我还建立了技术,以估算某些功能的关键点的摩尔斯索引,该功能无法假设palais-smale条件,包括领导Liouville Systems的功能。此外,我展示了有关与标量liouville系统有关的功能(即liouville类型方程)的临界点周围结构的属性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blow-up analysis for an elliptic equation describing stationary vortex flows with variable intensities in 2D-turbulence
  • DOI:
    10.1016/j.jde.2010.06.006
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    H. Ohtsuka;T. Ricciardi;Takashi Suzuki
  • 通讯作者:
    H. Ohtsuka;T. Ricciardi;Takashi Suzuki
The structure of the solution set for a mean field equation
平均场方程解集的结构
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大塚浩史;リチャルディ トーニア;大塚浩史;Hiroshi Ohtsuka;Hiroshi Ohtsuka;Hiroshi Ohtsuka;Hiroshi Ohtsuka;大塚浩史;大塚浩史;大塚浩史;大塚浩史
  • 通讯作者:
    大塚浩史
多様な強度をもつ点渦系の定常状態として捉えられた2次元乱流を表す楕円型方程式の爆発解析
表达二维湍流的椭圆方程的爆炸分析被视为具有不同强度的点涡系统的稳态
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大塚浩史;リチャルディ トーニア
  • 通讯作者:
    リチャルディ トーニア
On the strueture of the critical set in the minimax theorem without the Palais-Smale condition
没有Palais-Smale条件的极小极大定理中临界集的结构
点渦系とその平均場について
关于点涡系统及其平均场
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Ohtsuka;Takasi Senba;Takashi Suzuki;Masashi Misawa;三沢正史;Hiroshi Ohtsuka;大塚浩史
  • 通讯作者:
    大塚浩史
共 13 条
  • 1
  • 2
  • 3
前往

OHTSUKA Hiroshi的其他基金

Study on the relation between the mean field of the equilibrium vortices and the vortex system
平衡涡平均场与涡系统关系的研究
  • 批准号:
    22540231
    22540231
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Investigation of cause and pursuing criminal liability in case of medical accidents
医疗事故查明原因并追究刑事责任
  • 批准号:
    21330016
    21330016
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Comprehensive study of criminal law interpretation and policy in the age of globalization
全球化时代刑法解释与政策综合研究
  • 批准号:
    18330013
    18330013
  • 财政年份:
    2006
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Process algebra based analysis and verification for asynchronous communications appeared in parallel programs
并行程序中出现了基于过程代数的异步通信分析和验证
  • 批准号:
    14540121
    14540121
  • 财政年份:
    2002
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of functional equations describing dynamics of infectious disease
描述传染病动力学的函数方程分析
  • 批准号:
    17K05365
    17K05365
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Construction of the viscosity solution theory connecting continuous problems and discrete problems
连接连续问题和离散问题的粘性解理论的构建
  • 批准号:
    16K17621
    16K17621
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)
Applications of micro-local analysis and wavelet analysis to wave equations with variable coefficients
微观局部分析和小波分析在变系数波动方程中的应用
  • 批准号:
    16K05223
    16K05223
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Mathematical study of micro pressure waves for developments in modern high-speed trains
现代高速列车发展中微压力波的数学研究
  • 批准号:
    15KT0014
    15KT0014
  • 财政年份:
    2015
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Expansion of numerical verification methods for functional equations
函数方程数值验证方法的扩展
  • 批准号:
    15H03637
    15H03637
  • 财政年份:
    2015
  • 资助金额:
    $ 2万
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)