Mathematical Analysis of free boundary problems related to a variational problem

与变分问题相关的自由边界问题的数学分析

基本信息

  • 批准号:
    09640170
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We mainly investigated a free boundary problem related to a variational problem. Since our problem has a feature (hat the free boundary is a set of singular points of a minimizer and the energy concentrate on it. So, we can cosider that our purpose is on treating the energy concentration phenomena on the singularity of solutions. In this stand point of view, we treated the following type of problems :(1)Develop Regularity theory of elliptic free boundary problem related to minimizing functional with moving boundary,(2)Develop a Numerical method via a minimization process,(3)Develop a method related to solve a hyperbolic free boundary problem.For problem (1), in 2-dimensional case, we successfully showed regularity of free boundary on some nonlinear case. For (2), we treated the Ginzburg-Landau functional which mainly appear in superconducting phenomema. In this, we developed a method due to discrete Morse semiflow for parabolic and hyperbolic problems. For (3), we constucted a strong solutions related to hyperbolic free boundary problems under some compatibility conditions. Moreover we developed a software to solve this with good accuracy. We summed up these results into 7 papers (appeared or in press) and I preprint (submitted).
我们主要研究与变分问题相关的自由边界问题。由于我们的问题有一个特点(即自由边界是极小化器的一组奇点,并且能量集中在其上。因此,我们可以认为我们的目的是处理解奇点上的能量集中现象。在此站在角度来看,我们处理以下类型的问题:(1)开发与最小化移动边界泛函相关的椭圆自由边界问题的正则理论,(2)通过最小化过程开发数值方法,(3)开发一种方法相关解决对于问题(1),在二维情况下,我们成功地展示了在某些非线性情况下自由边界的规律性。对于问题(2),我们处理了主要出现在超导现象中的Ginzburg-Landau泛函。为此,我们开发了一种针对抛物线和双曲问题的离散莫尔斯半流方法,对于(3),我们在某些兼容性条件下构造了与双曲自由边界问题相关的强解。此外,我们开发了一个软件来高精度地解决这个问题。我们将这些结果总结为 7 篇论文(已发表或正在出版),我预印本(已提交)。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kodama: "Characterization of generalized complex ellipsoids in C^n-from the viewpoint of biholomorphic automorphisms" Geometric Complex Anal.363-369 (1996)
A.Kodama:“从双全纯自同构的角度来表征 C^n 中的广义复椭球体”Geometric Complex Anal.363-369 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Imai,S.Omata,K.Nakane K.Kikuchi: "Numerical analysis of a free boundary problem governed by a hyperbolic equation" in Proc.Third China-Japan Seminar on Numerical Mathematics,Science Press Beijing New York. 214-221 (1998)
H.Imai,S.Omata,K.Nakane K.Kikuchi:“双曲方程控制的自由边界问题的数值分析”载于第三届中日数值数学研讨会论文集,科学出版社北京纽约。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nagasawa K.Nakane S.Omata: "Hyperbolic Ginzburg Landau system" Nonliear Analysis. to appear.
T.Nagasawa K.Nakane S.Omata:“双曲 Ginzburg Landau 系统”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Imai,S.Omata,K.Nakane K.Kikuchi: "Numerical analysis of a free boundary problem governed by a hyperbolic equation" in Proc.Third China-Japan Seminar on Numerical Mathematics,Science Press Beijing New York. 214-221 (1998)
H.Imai,S.Omata,K.Nakane K.Kikuchi:“双曲方程控制的自由边界问题的数值分析”载于第三届中日数值数学研讨会论文集,科学出版社北京纽约。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Omata T.Okamura K.Nakane: "Numerical analysis for the discrete Morse semiflow related to the Ginzburg Landau funcional" Nonlinear Analysis. to appear.
S.Omata T.Okamura K.Nakane:“与 Ginzburg Landau 函数相关的离散莫尔斯半流的数值分析”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OMATA Seiro其他文献

OMATA Seiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OMATA Seiro', 18)}}的其他基金

Variational approach to collision, detachment and adhesion
碰撞、分离和粘附的变分方法
  • 批准号:
    23340024
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New topics for partial differential equations whose solution has singular sets
解具有奇异集的偏微分方程的新主题
  • 批准号:
    18340047
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis for nonlinear partial differential equations with singular solutions
具有奇异解的非线性偏微分方程的数学分析
  • 批准号:
    15340041
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
  • 批准号:
    11640159
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

非线性椭圆偏微分方程中的质量约束变分问题
  • 批准号:
    12371107
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
分数阶医学图像配准模型中的变分问题与数值算法研究
  • 批准号:
    11901443
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
变分方法与非线性偏微分方程中若干问题的研究
  • 批准号:
    11301374
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
变分方法与非线性偏微分方程前沿问题
  • 批准号:
    11271353
  • 批准年份:
    2012
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
最优运输中几类非线性偏微分方程和变分问题的研究
  • 批准号:
    11071119
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

共形写像に関連する変分問題と計量のpullbackに関する変分問題の研究
与保形映射和度量回调相关的变分问题研究
  • 批准号:
    22K03290
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Introduction of water vapor balance method into variational assimilation scheme to solve the spin-down problem.
将水汽平衡法引入变分同化方案中解决减速问题。
  • 批准号:
    19K23468
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Cut locus and variational problems with constaints on Finsler manifolds
求解 Finsler 流形上的轨迹和变分问题
  • 批准号:
    17K05226
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on a variational problem related to conformal maps and a variational problem of pullback of metrics
共形映射相关变分问题及度量回拉变分问题研究
  • 批准号:
    15K04846
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Obstacle problem for fluid mechanics and parabolic variational inequalities
流体力学和抛物变分不等式的障碍问题
  • 批准号:
    26400164
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了