Global Analysis for Geometric Structures and Topological Invariants

几何结构和拓扑不变量的全局分析

基本信息

  • 批准号:
    09640102
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We studied global analysis for geometric structures and topological invariants, as follows respectively.Akutagawa : He studied on the theory of Seiberg-Witten theory on compact 4-manifolds, spin^c geome-try/analysis and its application to Yamabe invariants of K_hler surfaces. He obtained some strategies for open problems on Yamabe invariants.Sato : He classified classical Schottky groups of real type of genus two into eight categories, and then obtained the fundamental domains of them and the shapes of their Schottky spaces.Kumura : He studied on the spectral distance on compact Riemannian manifolds (M, g, upsilon) with weighted measure, by using their heat kernels. He also studied on compactness of a family of and the structure of the closure of {(M_i, g_i, upsilon_i)} with respect to the spectral distance. Moreover, he applied their results to some examples.Nakanishi : He studied on the real analytic structure of the Teihm_ller spaces of 2-dimensional hyperbolic orbifolds of topologically finite. He realized the Teichm_ller spaces as real algebraic surfaces, and applied this result to the problems on the representation of mapping class groups, and the Weil-Petersson geometry.Nayatani : He studied about the canonical metrics on the domains of discontinuity of discrete groups of complex-hyperbolic isometries. He defined quaternionic analogues of CR structures and pseudo-Hermitian sturctures paticularly, and applied them the study on the cannonical metrics.Hashimoto : He studied on geometric structures induced by the Abelian differentials on Riemann surfaces. Moreover, from the viewpoint of the reduction of monodoromy of the projective structures on a Riemainn surface, he also gave a relation between the geometric structures and representation formulas of constant mean curvature surfaces.
我们研究了几何结构和拓扑不变量的全局分析,分别如下。 芥川:他研究了紧致4流形的Seiberg-Witten理论、自旋^c几何/分析及其在K_hler曲面的Yamabe不变量中的应用。他获得了一些关于 Yamabe 不变量的开放问题的策略。 Sato :他将实型 2 的经典肖特基群分为八类,然后获得了它们的基本域及其肖特基空间的形状。 Kumura :他研究了通过使用其热核,通过加权测量紧凑黎曼流形(M,g,upsilon)上的谱距离。他还研究了 {(M_i, g_i, upsilon_i)} 族的紧致性和闭包结构相对于谱距离的关系。此外,他还将他们的结果应用到了一些例子中。 Nakanishi:他研究了拓扑有限的二维双曲轨道的 Teihm_ller 空间的实解析结构。他认识到 Teichm_ller 空间是实代数曲面,并将这一结果应用于映射类群的表示问题以及 Weil-Petersson 几何。 Nayatani :他研究了复数离散群不连续域的规范度量-双曲等轴测图。他特别定义了CR结构和伪厄米结构的四元数类似物,并将它们应用于规范度量的研究。桥本:他研究了黎曼曲面上阿贝尔微分导出的几何结构。此外,从黎曼曲面上射影结构单射性约简的角度,他还给出了常平均曲率曲面的几何结构与表示式之间的关系。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Hashimoto and H.Ohba: "Cutting and pasting of Riemann surfaces with Abelian differential, I" International Journal of Mathematics. (印刷中).
Y. Hashimoto 和 H. Ohba:“用阿贝尔微分剪切和粘贴黎曼曲面,I”《国际数学杂志》(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Izeki and S.Nayatani: "Canonical metric on the domain of discontinuity of a Kleinian group" Seminaire de theorie spectrale et geometrie. 16. 9-32 (1998)
H.Izeki 和 S.Nayatani:“克莱因群不连续域的规范度量”光谱与几何理论研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Kasue, H.Kumura and Y.Ogura: "Convergence of heat kernels on a compact manifold" Kyushu Journal of Mathematics. 51. 453-524 (1997)
A.Kasue、H.Kumura 和 Y.Ogura:“紧流形上的热核收敛”九州数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Izeki and S.Nayatani: "Canonical metric on the domain of discontinuity of a Kleinian group" Seminaire de theorie spectrale et geometrie. 16. 9-32 (1998)
H.Izeki 和 S.Nayatani:“克莱因群不连续域的规范度量”光谱与几何理论研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kumura: "Convergence of heat kernels on a compact manifold" Kyushu Journal Mathematics. 51. 453-524 (1997)
H.Kumura:“紧流形上热核的收敛”九州数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AKUTAGAWA Kazuo其他文献

AKUTAGAWA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AKUTAGAWA Kazuo', 18)}}的其他基金

Conformal Geometry, and Geometry of Einstein Metrics and Exotic Differentiable Structures
共形几何、爱因斯坦度量几何和奇异可微结构
  • 批准号:
    21540097
  • 财政年份:
    2009
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Conformal Geometry from the Viewpoint of Topology and Analysis
从拓扑与分析的角度研究共形几何
  • 批准号:
    18540098
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Geometry and Analysis of Conformal Manifolds and Bubbling Trees
共形流形和冒泡树的几何与分析研究
  • 批准号:
    14540072
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin^c Analysis for Group C^*-bundles on Manifolds and Study of Yamabe Invariants
流形上C^*-丛的自旋^c分析及Yamabe不变量的研究
  • 批准号:
    11640070
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Geometric Problems in Kahler-Einstein Theory, Seiberg-Witten Equations and Complex Hyperbolic Geometry
卡勒-爱因斯坦理论、塞伯格-维滕方程和复杂双曲几何中的几何问题
  • 批准号:
    1505063
  • 财政年份:
    2016
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了