FUNDAMENTAL RESERCH ON THE NONLINEAR VIBRATION AND MOTION CONTROL OF A MAGLEV-SYSTEM

磁浮系统非线性振动与运动控制的基础研究

基本信息

项目摘要

Purpose of the Research (described in the initial application, with a few modifications) Results1. To complete algorithms/programs in order to identify the magnetic spring function. Arrived at the expected stage.2. To study theoretically the accuracy of identification in the magnetic spring function in the static field. Arrived at the expected stage.3. To study experimentally the accuracy of identification in the magnetic spring function in the static field. Experimental apparati are completed and work is progressing.4. To identify experimentally the repulsing magnetic field via the eddy current. especially the ultra high speed object. Experimental apparati are completed and work is progressing.5. To study problems of nonlinear vibration, chaos in particular, running (flux shearing) resistance and vibration damping in the models of the previous items 3 and 4. Experimental apparati are completed and work is progressing.Derived Problems results6. Computer simulation of nonlinear vibrations.Arrived at the expected stage and many papers were published.7. Studies of accurate numeration and/or solutions as well as functions. Many extended problems were found and work is progressing.Plan for future reseaches It is concluded that an apparetus for achieving a transonic high speed corresponding to the previous item 4 is incomplete because of the difficulty of the over-stress in the rotating wheel. thus, we developed a method to neutralize the stress by blowing a gas from outside of the wheel with the pressure corresponding to the centrifugal stress. The basic design is completed, however, the construction of the system is postponed because of financial problems.
研究目的(在最初的申请中进行了描述,进行了一些修改) 结果1。完成算法/程序以识别磁力弹簧功能。达到预期阶段。2.从理论上研究静磁场中磁弹簧函数的识别精度。达到预期阶段。3.实验研究静态场中磁弹簧函数的识别精度。实验装置已完成,工作正在进行中。 4.通过涡流实验识别排斥磁场。尤其是超高速物体。实验装置已完成,工作正在进行中。 5.研究前面第3项和第4项模型中的非线性振动问题,特别是混沌问题,运行(磁通剪切)阻力和振动阻尼问题。实验装置已完成,工作正在进行中。衍生问题结果6。非线性振动的计算机模拟。达到预期阶段,发表多篇论文。7.研究精确的计数和/或解决方案以及函数。发现了许多扩展问题,工作正在进行中。 未来研究计划 结论是,由于旋转轮中的过应力的困难,对应于前项4的用于实现跨音速高速的装置是不完整的。因此,我们开发了一种通过从车轮外部吹入与离心应力相对应的压力的气体来中和应力的方法。基本设计已经完成,但由于资金问题,系统建设被推迟。

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Z.XU: "Simulation of Chaotic Vibration of Single-Degree-of-Freedom Magnetic Levitation System" T-JSME (in Japanese). Vol.61. 823-830 (1995)
Z.XU:“单自由度磁悬浮系统混沌振动仿真”T-JSME(日文)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
田村 英之: "ダフィング族スナップスルースプリング系自由振動の厳密解とその数値化プログラム(第2報,非対称両振りモード)" 日本機械学会論文集. 61(C). 760-767 (1995)
Hideyuki Tamura:“Duffing 族弹通弹簧系统的自由振动的精确解及其数值程序(第二次报告,非对称双摆动模式)”日本机械工程师学会会刊 61(C)(1995 年)。 )
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
田村 英之: "任意の三次曲線ばねをもつ1自由度系の自由振動厳密解の高精度数値化(非対称ソフトスプリング)" 九州大学工学集報. 69. 181-188 (1996)
Hideyuki Tamura:“具有任意立方弹簧(非对称软弹簧)的一自由度系统的自由振动精确解的高精度数值表达式”九州大学工学通报 69. 181-188(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.TAMURA: "Exact Solutions of Free Vibration in a Single-Degree-of-Freedom System Having an Arbitrary Cubic Spring Function (Asymmetrical Hard Spring)" T-JSME (in Japanese). Vol.62. 1247-1255 (1996)
H.TAMURA:“具有任意立方弹簧函数(不对称硬弹簧)的单自由度系统中自由振动的精确解”T-JSME(日语)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.TAMURA: "Exact Solutions of Free Vibration in a Single-Degree-of-Freedom System Having an Arbitrary Cubic Spring" Proc.EUROMECH-znd ENOC,Prague. Vol.1. 443-446 (1996)
H.TAMURA:“具有任意立方弹簧的单自由度系统中自由振动的精确解”Proc.EUROMECH-znd ENOC,布拉格。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAMURA Hideyuki其他文献

TAMURA Hideyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAMURA Hideyuki', 18)}}的其他基金

Constructing a Basic Body and Defining Research Issues of Diminished Reality Technology As Visual Magic
构建视觉魔法的基本体并定义缩小现实技术的研究问题
  • 批准号:
    22650035
  • 财政年份:
    2010
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
SIMULATION OF VIBRATIONS DUE TO BALL BEARING
滚珠轴承引起的振动模拟
  • 批准号:
    61550190
  • 财政年份:
    1986
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

悬挂式单轨车辆基于复杂非线性振动频谱特征的孪生建模及行驶摆振的非线性鲁棒跟踪控制
  • 批准号:
    52305093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机电耦合系统非线性振动机理及抑制方法研究
  • 批准号:
    12372005
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于谱子流形模型降阶和拓扑优化的高维非线性振动调控
  • 批准号:
    12302014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
功能梯度压电半导体板壳结构的非线性振动特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精密柔性印刷电子制备中薄膜的非线性振动及动力稳定性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
  • 批准号:
    EP/W032236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
Enhanced Vibration Suppression and Energy Harvesting by Exploiting Features of Nonlinear Systems
利用非线性系统的特征增强振动抑制和能量收集
  • 批准号:
    RGPIN-2016-04419
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Study on a vibration isolator using post-buckled properties of nonlinear materials
利用非线性材料后屈曲特性的隔振器研究
  • 批准号:
    22K03999
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhanced Vibration Suppression and Energy Harvesting by Exploiting Features of Nonlinear Systems
利用非线性系统的特征增强振动抑制和能量收集
  • 批准号:
    RGPIN-2016-04419
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
High-power broadband vibration energy harvesting by a low-loss nonlinear oscillator using diamagnetic levitation
利用反磁悬浮的低损耗非线性振荡器收集高功率宽带振动能量
  • 批准号:
    21K03936
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了