双曲型方程式系に対する逆問題の数学解析
双曲方程组反问题的数学分析
基本信息
- 批准号:06F06323
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2008
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
媒質の異方性を境界の観測値から決定したり、望まれている出力を実現するように決定する逆問題は、数学だけでなく応用においても重要であるが、媒質が異方性の場合には結果が少ないので、このような課題に集中的に取り組んだ。特に、Maxwell方程式系について、媒質のより一般的な異方性を境界の有限回の観測値から決定する逆問題の一意性と安定性を確立しつつあり、一般的な異方性媒質におけるMaxwell方程式に対するCarleman評価を証明する予定である。このような評価は逆問題を解決するために基本的なステップであるが、この部分の研究は、まだ最終的な成果の公表には至っていない。同時に異方性媒質におけるLame方程式系の逆問題についも同様な研究を行ったが、これはMaxwell方程式の場合に比べてはるかに困難であり、キーテクニックであるCarleman評価といわれる重みつきの不等式に確立にはまだ課題が残されている。さらに、薄い殻(シェル)の方程式を考え、弾性係数を境界観測で決定するという逆問題の一意性と安定性を解決し、論文はまもなく出版される予定である。また、平成19年6月にフランスに出張し、Pont-a-Moussonにおける国際会議に招待され、上記の研究成果を発表し、Carleman評価による逆問題や制御理論における専門家と意見交換ならびに議論を行い、今後の研究の進め方の細部にわたり、貴重な示唆を得た。
从边界观测结果决定培养基的各向异性并确定所需的输出所达到的反向问题不仅在数学中,而且在应用中也很重要,而且在培养基为各向异性的情况下,结果很少,因此我们将重点放在这些问题上。特别是,对于麦克斯韦方程系统,我们正在建立逆问题的独特性和稳定性,从而确定介质对边界的有限观察结果的更笼统的各向异性,我们打算证明对麦克斯韦方程的卡尔曼评估一般各向异性媒体。这样的评估是解决反问题的基本步骤,但是研究的这一部分尚未发布到最终结果。同时,我们对各向异性媒体中la脚方程系统的反问题进行了类似的研究,这比麦克斯韦方程的情况要困难得多,并且仍然存在挑战,即确定称为卡尔曼评估的权重不平等,这是一种关键技术。此外,该论文将在考虑薄外壳方程并解决通过边界观测确定弹性模量的逆问题的唯一性和稳定性后,将很快发表。他还于2007年6月前往法国,并被邀请参加Pont-A-Mousson的国际会议,介绍了上述研究结果,交换了意见并与基于Carleman评估的反问题和控制理论的专家进行了讨论,并就如何进行未来研究的详细信息获得了宝贵的建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of coefficients in a hyperbolic equation with impulsive inputs
具有脉冲输入的双曲方程中的系数估计
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:LI;Shumin,;Shumin LI;Shumin LI
- 通讯作者:Shumin LI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
山本 昌宏其他文献
On an inverse problem related to laser material treatments
关于激光材料处理的反问题
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
山本 昌宏;H" omberg;D - 通讯作者:
D
A Conditional Stability Estimate for an Inverse Neumann Boundary Problem (解析接続の応用)
逆诺伊曼边界问题的条件稳定性估计(解析连接的应用)
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
韓 耀宗;山本 昌宏 - 通讯作者:
山本 昌宏
ERROR ESTIMATES OF THE REAL INVERSION FORMULAS OF THE LAPLACE TRANSFORM : abstract (Reproducing Kernels and their Applications)
拉普拉斯变换的实数反演公式的误差估计:摘要(再现内核及其应用)
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
天野 一男;斎藤 三郎;山本 昌宏 - 通讯作者:
山本 昌宏
多倍長計算の逆問題、非適切問題への適用
多精度计算在反问题和不恰当问题中的应用
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
山本 昌宏;Wan;X.Q.;Wang;Y.B.;Osamu Saeki;藤原 宏志 - 通讯作者:
藤原 宏志
山本 昌宏的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('山本 昌宏', 18)}}的其他基金
汚染物質の拡散の推定と予測のための逆問題の数学手法の開拓
开发反问题的数学方法来估计和预测污染物扩散
- 批准号:
21K18142 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
非整数階偏微分方程式に対する逆問題と関連課題
分数阶偏微分方程的反问题及相关问题
- 批准号:
20F20319 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
- 批准号:
20H00117 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical analysis and applications of crystal growth and anomalous diffusion
晶体生长和反常扩散的数学分析及应用
- 批准号:
16F16319 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
偏微分方程式の係数決定逆問題の理論の新展開
偏微分方程系数确定反问题理论的新进展
- 批准号:
15H02059 - 财政年份:2015
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
再生核ヒルベルト空間による逆問題数値解析手法の開発
利用再生核希尔伯特空间的反问题数值分析方法的发展
- 批准号:
20654011 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
産業数学における逆問題の高速数値解法の理論と実用化
工业数学反问题高速数值求解的理论与实际应用
- 批准号:
17654019 - 财政年份:2005
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Exploratory Research
マクスウェルの方程式ならびにラメの方程式に対する逆問題の解析手法の開発
麦克斯韦方程组和拉梅方程组反问题分析方法的发展
- 批准号:
15654015 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Exploratory Research
応用逆問題の研究動向の調査と研究体制の整備
应用反问题研究动态调查及研究体系建设
- 批准号:
14604005 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
波動方程式の外力項の内部観測による決定問題の数理解析的研究
基于波动方程外力项内观的决策问题数学分析研究
- 批准号:
07740142 - 财政年份:1995
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似国自然基金
HMX晶体炸药超精密切削界面摩擦热安定性的理论研究
- 批准号:52305517
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
- 批准号:82371638
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
微生物矿化提升钢渣细集料安定性的生物化学机理和技术基础
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微生物矿化提升钢渣细集料安定性的生物化学机理和技术基础
- 批准号:52208267
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
常温常压下微生物促成利用烟气CO2提升钢渣掺合料安定性和活性的生物化学机理与动力学规律
- 批准号:52172016
- 批准年份:2021
- 资助金额:59.00 万元
- 项目类别:面上项目
相似海外基金
Elucidation of new dissipative structure and exploration of general stability analysis method for symmetric hyperbolic system
新耗散结构的阐明及对称双曲系统一般稳定性分析方法的探索
- 批准号:
21K13818 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Entropy dissipative structure and mathematical analysis for complex fluids
复杂流体的熵耗散结构与数学分析
- 批准号:
18H01131 - 财政年份:2018
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of free boundary problems in shallow water systems
浅水系统自由边界问题分析
- 批准号:
17K05313 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical research for parallel computing of sequential problems and its development of framework
序贯问题并行计算的数学研究及其框架开发
- 批准号:
17H01750 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)