電気化学的溶解過程における界面の不安定性とフラクタルパターン形成の研究
电化学溶解过程中界面不稳定性和分形图案形成的研究
基本信息
- 批准号:06740311
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
今年度はまず,再現性があり定量的な電気化学的溶解の実験系を構築するために,本研究用に最適化されたポテンショスタットと電解用セルを製作した.この装置によって,シリコンを沸酸水溶液中で陽極酸化する実験を行ったところ,これまで明確にされなかった多孔質シリコンが得られるパラメータ領域と電解研磨領域との転移が電流-電圧特性などから精密に測定できるようになった.作成された試料について原子間力顕微鏡や電子顕微鏡によってその表面形態を測定・解析した.表面の形態が多孔質状から平滑な面状に転移する点近傍では,界面の形状が自己アフィンフラクタルであることを実験的に明らかにし,そのスケーリング指数を決定した.この時,表面の荒さの指数(ハ-スト指数)は0.85程度であって,従来までの理論やモデルの範囲では説明できないクラスに属することが示された.これらの知見から,シリコンのエッチング過程においては,結晶中の不純物分布などの空間的に固定された秩序が大域的パターンに影響しているものと示唆される.さらに,半導体のエッチング過程の数理モデルを立て,界面の運動を線形安定解析し,実験結果との比較検討を行った.その結果,半導体界面における空乏層領域の存在とマクロスコピックなエッチングパターンの形態が密接に関係していることが示された.半導体の不純物濃度等を変えた系統的な実験により,モデルから予想されるパターンの転移条件が実験結果とよく一致することが明らかとなった.
今年,我们首先制造了针对本研究优化的恒电位仪和电解池,以构建可重复且定量的电化学溶解的实验系统。当我们在酸性水溶液中进行阳极氧化实验时,我们发现参数区域之间的转变。迄今为止尚未阐明的多孔硅和电解抛光区域的原因是电流-电压转变。精确测量样品的特性已成为可能。使用原子力显微镜和电子显微镜对制备的样品的表面形貌进行测量和分析。表面形貌从多孔表面转变为光滑表面的点附近,我们通过实验阐明了界面的形状是自仿射分形,并确定了其标度指数。 -斯多葛指数)约为0.85,表明它属于常规理论和模型无法解释的一类。从这些发现可以清楚地看出,在硅蚀刻过程中,考虑晶体中的杂质分布非常重要这表明空间固定顺序影响全局模式。此外,我们开发了半导体蚀刻过程的数学模型和。我们对表面运动进行了线性稳定性分析,并与实验结果进行了比较。通过系统的实验,结果表明,半导体界面处耗尽层区域的存在与宏观刻蚀图案的形貌密切相关。当半导体的杂质浓度发生变化时,模型预测的图案转变条件与实验结果吻合良好。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
林政男: "陽極化成シリコン表面に形成されるナノ構造パターンのフラクタル解析" 電子情報通信学会技術研究報告. NLP94. 63-69 (1994)
Masao Hayashi:“阳极氧化硅表面形成的纳米结构图案的分形分析”IEICE 技术报告 63-69 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshinori Hayakawa: "Pattern Selection of Multicrack Propagation in Quenched Crystals" Physical Review E. 50. 1748-1751 (1994)
Yoshinori Hayakawa:“淬火晶体中多裂纹扩展的模式选择”物理评论 E. 50. 1748-1751 (1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
早川 美徳其他文献
モバイルアプリを用いた自発的な復習を可能とするUXデザインの実装と評価
UX 设计的实施和评估,可使用移动应用程序进行自发审查
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
中川 稜;大河 雄一;趙 秀敏;高橋 晶子;大山 智也;三石 大;早川 美徳 - 通讯作者:
早川 美徳
初修外国語教育における自発的な復習の促進のためのUXデザインの提案
用户体验设计提案促进首次外语教育自愿审查
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
中川 稜;大河 雄一;趙 秀敏;高橋 晶子;大山 智也;三石 大;早川 美徳 - 通讯作者:
早川 美徳
初修外国語教育における自発的な復習の促進のためのUXデザインの提案
用户体验设计提案促进首次外语教育自愿审查
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
中川 稜;大河 雄一;趙 秀敏;高橋 晶子;大山 智也;三石 大;早川 美徳 - 通讯作者:
早川 美徳
初修外国語教育における自発的な復習の促進のためのUXデザインの提案
用户体验设计提案促进首次外语教育自愿审查
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
中川 稜;大河 雄一;趙 秀敏;高橋 晶子;大山 智也;三石 大;早川 美徳 - 通讯作者:
早川 美徳
早川 美徳的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('早川 美徳', 18)}}的其他基金
渡り鳥の群れの大域的な制御機構
候鸟群的全球控制机制
- 批准号:
19K12150 - 财政年份:2019
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
拡散場中で成長する界面の普遍的構造とパターン選択機構の研究
扩散场生长界面的通用结构与模式选择机制研究
- 批准号:
03740196 - 财政年份:1991
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
PF-ILDのフラクタル解析とCNN学習モデルを用いた画像診断研究
基于PF-ILD分形分析和CNN学习模型的图像诊断研究
- 批准号:
24K10916 - 财政年份:2024
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
スケーリング理論によるフラクタル性を有する複雑ネットワークの理解
使用尺度理论理解具有分形特性的复杂网络
- 批准号:
24K06896 - 财政年份:2024
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
フラクタル構造を応用した超軽量な衝撃吸収メタマテリアルの創製
利用分形结构创建超轻减震超材料
- 批准号:
24K07220 - 财政年份:2024
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
拡張型心筋症の心筋組織性状および左室内腔形態のフラクタル解析に関する研究
扩张型心肌病心肌组织特性及左心室腔形态的分形分析研究
- 批准号:
24K10908 - 财政年份:2024
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
- 批准号:
22KJ0375 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows