Additive functional of one-dimensional diffusion processes

一维扩散过程的加性泛函

基本信息

  • 批准号:
    17540105
  • 负责人:
  • 金额:
    $ 2.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

We studied mainly the long-time asymptotic behavior of additive functionals, especially the occupation times on the positie half line, of one-dimensional diffusion processes. Historically, this problem is well known for Brownian motions and random walks and the limiting distribution obeys the are-sine law. This result has been extended in various ways by many authors. Among them J. Lamperti found the all possible limiting distributions for stochasitic processes with discrete time parameter and he also succeeded to determine the domain of attraction. Although his theorem does not include the case of one-dimensional diffusions, a similar results is shown by S. Watanabe. Many probabilists are still interested in these classical results in connection with financial theory. In our research we studied similar problems for one-dimensional diffusion processes and random walks with random drifts (I. e., in random environments). Our main results are the following: (1) A certain kind of Zero-one law holds. That is, under some technical conditions, the time spent on the positive side converges in distribution to a Bernoulli random variable almost surely. (2) In that case, if the environment is of the stable-type, the time spent on the positive side converges in law to a certain non-degenerate distribution. These results were obtained with S. Watanabe and will be published in Stochastic Processes and its Applications. Another significant result is the following. Y. Yano, et.al. recently proved a functional limit theorem for Lamperti's classical theorem for the occupation times of the positive side. However, they excluded the extreme case of index zero. Our result is that, in such a case, we obtain a functional limit theorem under a non-linear normalization. This result is a joint work with S. Suzuki and published in Proc. Of Japan Acad.
我们主要研究了一维扩散过程的添加功能的长期渐近行为,尤其是在正面线上的职业时间。从历史上看,这个问题以布朗动作和随机步行而闻名,而有限的分布遵守了《明智的法》。许多作者都以各种方式扩展了这一结果。其中J. Lamperti发现了具有离散时间参数的稳态过程的所有可能限制分布,他还成功地确定了吸引人的域。尽管他的定理不包括一维扩散的情况,但沃特那纳布链球菌显示出类似的结果。许多概率主义者仍然对这些与财务理论相关的经典结果感兴趣。在我们的研究中,我们研究了一维扩散过程和随机漂移的随机步行(I. e。,在随机环境中)的类似问题。我们的主要结果是以下内容:(1)某种零一法律所规定。也就是说,在某些技术条件下,几乎可以肯定的是,在分布分布上花费的时间在分布上收敛到伯努利随机变量。 (2)在这种情况下,如果环境是稳定型的,则在正面上花费的时间会在法律上收敛于某些非分数分布。这些结果是用渡边链球菌获得的,将在随机过程及其应用中发表。另一个重要的结果是以下内容。 Y. Yano等最近证明,兰普蒂(Lamperti)的占用时间为正面时代的经典定理是一个功能极限定理。但是,他们排除了指数零的极端情况。我们的结果是,在这种情况下,我们在非线性归一化下获得了功能极限定理。该结果是与S. S. S. S. S. s. s. s. proc。日本学院。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ランダム媒質中のランダムウォークの片側滞在時間
随机介质中随机游动的单侧停留时间
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    渡辺信三;笠原勇二
  • 通讯作者:
    笠原勇二
拡散過程の片側滞在時間に関する1つの極限定理
关于扩散过程单侧停留时间的一项极限定理
Brownian representation of a class of Levy processes and its application to occupation times of diffusion processes.
一类 Levy 过程的布朗表示及其在扩散过程占据时间中的应用。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Kasahara;S.Watanabe
  • 通讯作者:
    S.Watanabe
Brownian representation of a class of Levy processes and its application to occupation times of diffusion processes
一类 Levy 过程的布朗表示及其在扩散过程占据时间中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kasahara;Yuji ; Watanabe;Shinzo
  • 通讯作者:
    Shinzo
ランダム媒質中の拡散過程の片側滞在時間
随机介质中扩散过程的单侧停留时间
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笠原勇二;渡辺信三
  • 通讯作者:
    渡辺信三
共 11 条
  • 1
  • 2
  • 3
前往

KASAHARA Yuji的其他基金

New approach to spectral theory of generalized second-order differential operators and its applications to probability theory
广义二阶微分算子谱论的新方法及其在概率论中的应用
  • 批准号:
    21540109
    21540109
  • 财政年份:
    2009
  • 资助金额:
    $ 2.22万
    $ 2.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Tauberian theorems of exponential type and its applications to probability theory
指数型陶伯定理及其在概率论中的应用
  • 批准号:
    13640104
    13640104
  • 财政年份:
    2001
  • 资助金额:
    $ 2.22万
    $ 2.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Study of fractional Brownian motion
分数布朗运动的研究
  • 批准号:
    10640107
    10640107
  • 财政年份:
    1998
  • 资助金额:
    $ 2.22万
    $ 2.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
STUDY OF SELF-SIMILAR PROCESSES
自相似过程的研究
  • 批准号:
    08454038
    08454038
  • 财政年份:
    1996
  • 资助金额:
    $ 2.22万
    $ 2.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)