Metric invariants and space structures
度量不变量和空间结构
基本信息
- 批准号:17540079
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Distance function d_p to a point p of a compact Riemannian manifold is an important geometric function that is also related to the manifold structure. However, distance function d_p admits a point where d_p is not differentiable, and such a point is contained in the cut locus C_p of p. It was known that the notion of critical points may be introduced as in usual Morse theory and d_p is not differentiable at critical points. In the case where there are no critical points, Morse theory (the isotopy lemma) has been developed as in smooth case that played an important role in applications.Now to develop Morse theory for distance functions including critical points, one should first define the notion of the index at a critical point. Under the support of the present Grant-in-Aid, T. Sakai, head investigator of this research program, carried out this with J. Itoh when Riemannian metric satisfies some natural non-degeneracy conditions, and developed Morse theory for distance functions from a … More direct geometric view point (has been published in a Journal). There it is important to show that the cut locus Cp carries a nice structure (Whitney stratification), and the index of a critical point q is defined in terms of the number of minimal geodesics joining p, q and the usual index at q of the restriction of 4 to the stratum containing q that is a smooth function with a critical point q. I hope to continue to study how generic is the conditions among all Riemannian metrics on a given manifold.With respect to distance functions, K. Kiyohara determined the explicit structure of the cut locus and the conjugate locus of any point in ellipsoids (and some Liouville manifolds) from a view point of integrable geodesic flow with J. Itoh, and A. Katsuda studied the inverse problem of the Neumann boundary value problem, namely how to reconstruct the inner Riemannian metric from the distance function to the boundary of a Riemannian manifold with boundary.As for geometric inequalities (isosystolic inequality, isodiametric inequality) and the first eigenvalue estimate of the Laplacian of a compact Riemannian manifolds with non-negative Ricci curvature and its perturbation, we could not make substantial progress in this period, but Kiyohara obtained a result concerning an inequality of geometric invariants of Alexandrov spaces. I hope to continue to carry the program. Y. Mori investigated algorithm of quantum computer and supported Sakai in computer aid. Less
距离功能D_P到紧凑的Riemannian歧管的点P是一个重要的几何函数,也与歧管结构有关。但是,距离函数D_P承认D_P无法区分的点,并且在p的切割基因座C_P中包含一个点。众所周知,临界点的概念可以像通常的莫尔斯理论中一样引入,并且在临界点上d_p并不可区分。在没有临界点的情况下,莫尔斯理论(同位论引理)是在平滑的情况下在应用中发挥重要作用的。现在,为包括关键点在内的距离函数开发莫尔斯理论,首先应该在关键点上定义索引的概念。在目前的赠款的支持下,该研究计划的首席研究员T. Sakai与J. Itoh进行了此操作,当Riemannian Metric满足某些自然的非分类条件时,并开发了来自…更直接几何学观点的距离函数的Morse理论(已发表在杂志上)。重要的是要表明,切割基因座CP具有一个良好的结构(惠特尼分层),并且临界点Q的索引是根据与P,Q相连的最小测量学的数量来定义的,Q,Q和通常的限制为4的限制Q的常见索引,其中包含Q光滑函数的Q光滑函数。 hope to continue to study how generic is the conditions among all Riemannian metrics on a given manifold.With respect to distance functions, K. Kiyohara determined the explicit structure of the cut locus and the conjugate locus of any point in ellipsoids (and some Liouville manifolds) from a view point of integrable geodesic flow with J. Itoh, and A. Katsuda studied the inverse problem of the Neumann boundary value problem, namely how to reconstruct the inner Riemann metric from the distance function to the boundary of a Riemannian manifold with boundary.As for geometric inequalities (isosystolic inequality, isodiametric inequality) and the first eigenvalue estimate of the Laplacian of a compact Riemannian manifolds with non-negative Ricci curvature and its perturbation, we could not make在此期间,基约哈拉(Kiyohara)获得了有关亚历山德罗夫(Alexandrov)空间几何不平等的结果。希望继续进行该计划。 Y. Mori研究了量子计算机的算法,并支持Sakai在计算机辅助方面。较少的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acute triangulations of the regular dodecahedral surface
- DOI:10.1016/j.ejc.2006.04.008
- 发表时间:2007-05
- 期刊:
- 影响因子:0
- 作者:Jin-ichi Itoh;T. Zamfirescu
- 通讯作者:Jin-ichi Itoh;T. Zamfirescu
Cut loci and distance functions
切割轨迹和距离函数
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yuji Kobayashi;Tomoko Adachi;小林 ゆう治(編集);小林ゆう治;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;HiroakI Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;谷口浩朗;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;J. Itoh and L. Yuan;H. Oshima;J. Itoh & T. Zamfirescu;J. Itoh & T. Sakai
- 通讯作者:J. Itoh & T. Sakai
Gauss-type curvatures and tubes for polyhedral surfaces
多面体表面的高斯型曲率和管
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Arkovitz;H.Oshima;J.Strom;J. Itoh and F. Ohtsuka;F. Ohtsuka;J. Itoh and T. Zamfirescu;J. Itoh
- 通讯作者:J. Itoh
Geodesic characterization of the isosceles tetrahedron
等腰四面体的测地线表征
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J. Itoh;T. Zamfirescu;伊藤 仁一;J. Itoh;清原 一吉;K. Kiyohara;清原 一吉;勝田 篤;A. Katsuda;勝田 篤;A. Katsuda;伊藤 仁一
- 通讯作者:伊藤 仁一
Cut loci and Jacobi fields of Liouville manifolds
刘维尔流形的割轨迹和雅可比场
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J. Itoh;C. Vilcu;伊藤 仁一;J. Itoh;酒井 隆;T. Sakai;伊藤 仁一;J. Itoh;清原 一吉;K. Kiyohara;伊藤 仁一;J. Itoh;清原 一吉;K. Kiyohara;清原 一吉;K. Kiyohara
- 通讯作者:K. Kiyohara
共 77 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16
SAKAI Takashi其他文献
Rght to the City in the Era of Gentrification
绅士化时代的城市权利
- DOI:
- 发表时间:20052005
- 期刊:
- 影响因子:0
- 作者:NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI TakashiNISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi
- 通讯作者:SAKAI TakashiSAKAI Takashi
理性の探求(5)名づけと所有--アメリカという制度空間
理性探寻(五)命名与所有权--美国的制度空间
- DOI:
- 发表时间:20052005
- 期刊:
- 影响因子:0
- 作者:NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄;西谷 修NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄;西谷 修
- 通讯作者:西谷 修西谷 修
鎮圧の後で
镇压后
- DOI:
- 发表时间:20042004
- 期刊:
- 影响因子:0
- 作者:NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎
- 通讯作者:冨山 一郎冨山 一郎
戦前の都市下層社会における貸し借りの論理――赤松啓介「非常民の民俗学」の記録を通して
战前城市下层社会的借贷逻辑——从赤松圭介《流民民间传说》的记录
- DOI:10.15026/11983610.15026/119836
- 发表时间:20222022
- 期刊:
- 影响因子:0
- 作者:酒井 隆史;サカイ タカシ;SAKAI Takashi酒井 隆史;サカイ タカシ;SAKAI Takashi
- 通讯作者:SAKAI TakashiSAKAI Takashi
<古代>の表象
<古代>的代表
- DOI:
- 发表时间:20042004
- 期刊:
- 影响因子:0
- 作者:NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄NISHITANI Osamu;NAKAYAMA Chikako (as editors);田島 達也;川村邦光;田島 達也;NAKAYAMA Chikako;荻野美穂;成澤 勝嗣;NAKAYAMA Chikako;NAKAYAMA Chikako;島薗 進;五十嵐 公一;HAYASHI Midori;YONETANI Masafumi;杉原 達;五十嵐 公一;YONETANI Masafumi;野口 剛;中村生雄;井田 太郎;YONETANI Masafumi;赤坂 憲雄;大久保 純一;ABE Kenichi;Junichi Okubo;池上 良正;ABE Kenichi;島薗 進;並木 誠士;ABE Kenichi;Seishi Namiki;島薗 進;SAKAI Takashi;玉蟲 敏子;SAKAI Takashi;玉蟲 敏子;冨山 一郎;Satoko Tamamushi;SAKAI Takashi;冨山 一郎;西谷 修;Satoko Tamamushi;玉蟲 敏子;中村生雄
- 通讯作者:中村生雄中村生雄
共 15 条
- 1
- 2
- 3
SAKAI Takashi的其他基金
Evaluation of hip translation in the native hips and treatment of the hip diseases
原生髋关节平移评价及髋关节疾病治疗
- 批准号:16K1081916K10819
- 财政年份:2016
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on special Lagrangian submanifolds and their singularities
特殊拉格朗日子流形及其奇点研究
- 批准号:2640007326400073
- 财政年份:2014
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Fractal Analysis and Fast Fourier Transform Analysis for Healing Irregularity
修复不规则性的分形分析和快速傅里叶变换分析
- 批准号:2460302324603023
- 财政年份:2012
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on special Lagrangian submanifolds in non-flat Calabi-Yau manifolds
非平坦Calabi-Yau流形中特殊拉格朗日子流形的研究
- 批准号:2374005723740057
- 财政年份:2011
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Studies on signaling pathways mediated by Nucling, a novel apoptosis-associating protein, in the development of inflammatory disorders and tumors
Nucling(一种新型凋亡相关蛋白)介导的信号通路在炎症性疾病和肿瘤发展中的研究
- 批准号:2259028622590286
- 财政年份:2010
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Development ofin vivo Hip Kinematics Evaluation System
体内髋关节运动学评估系统的开发
- 批准号:2259163322591633
- 财政年份:2010
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Geometry of weakly reflective submanifolds
弱反射子流形的几何结构
- 批准号:2074004420740044
- 财政年份:2008
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Development of Porous Ceramic-Immobilized Lipase Catalyst and Optically Active Fluorinated supramolecules
多孔陶瓷固定化脂肪酶催化剂及光学活性含氟超分子的研制
- 批准号:1355525513555255
- 财政年份:2001
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Efficient Preparation of Optically Active Highly Strained Azirines and Synthesis of Natural and Unnatural Amines and Amino Acids
光学活性高应变氮丙啶的高效制备以及天然和非天然胺和氨基酸的合成
- 批准号:1245036612450366
- 财政年份:2000
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Relations between space-structures and curvatures
空间结构与曲率之间的关系
- 批准号:1244002012440020
- 财政年份:2000
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
相似国自然基金
雀形目鸟类长距离迁徙的形态、行为、代谢和飞行功能适应性研究
- 批准号:32171490
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于多孔有机聚合物功能位点空间距离调控构筑催化羰基化协同体系
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
2p14区增强子致病SNP通过远距离调控ACTR2基因表达影响类风湿性关节炎的功能机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
活性位空间距离对双功能催化剂性能的影响及优化
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
片段化生境中常见种和稀有种的共存机制:基于性状种内变异和多度的关系
- 批准号:31901211
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Phylogenetic Network Simplification
系统发育网络简化
- 批准号:22H0355022H03550
- 财政年份:2022
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
A research on time-distance-focused communication clues and the functions
时间-距离聚焦的沟通线索及其功能研究
- 批准号:21K0437921K04379
- 财政年份:2021
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Health Informatics to Model the Scott County HIV Outbreak
健康信息学对斯科特县艾滋病毒爆发进行建模
- 批准号:1015967310159673
- 财政年份:2019
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:
Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
- 批准号:1038213510382135
- 财政年份:2014
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:
Collaborative Research: Positive definite functions in distance geometry and combinatorics
合作研究:距离几何和组合学中的正定函数
- 批准号:11016871101687
- 财政年份:2011
- 资助金额:$ 2.37万$ 2.37万
- 项目类别:Standard GrantStandard Grant