Aresearch on wide area traffic event detection systems by information fusion through ubiquitous sensor network

泛在传感器网络信息融合广域交通事件检测系统研究

基本信息

  • 批准号:
    17300042
  • 负责人:
  • 金额:
    $ 10.32万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

In this project, we aimed at development of wide area traffic event detection systems for driver's assistance by employing network of different kinds of sensors such as vision sensors and supersonic wave sensors. We installed incident detection system to collect image data of accidents, and investigated such acquired accident images to reveal mechanisms arousing accidents. By the investigation, an interesting mechanism was revealed as such that shock waves caused by a small breaking behaviors at downstream traffic are amplified during propagating to upstream traffic, and the shock waves should be a major factor for the accidents on highways.We thus developed sensor fusion network systems to detect propagation of such the shockwaves as soon as possible. The sensor fusion network systems employ image sensors and supersonic wave sensors for two kilometers long, and the collected data from the sensors will be summarized for the purpose of driver's assistance. The images sensors are able to … More acquire trajectory of each vehicle and vehicle count at each lane, while the supersonic wave sensors are able to acquire velocity of each vehicle and vehicle count at each lane. Velocities of vehicles can be calculated from the trajectories of vehicles of image sensors. By summarizing those velocities and vehicle counts from the sensors, we developed an algorithm to predict the state transition at each location caused by shock wave propagation. The algorithm defines boxels by dividing time-space cubes that represents velocity and vehicle count at each location at each time, and it modeled the state transition by learning six months data of the state transition. As a result, our algorithm was able to predict the state of each location at each time in 85-90% successful rate.Finally, we examined the effect of driver's support system by employing forty monitor drivers consisting of men and women of wide ages. In general such the pattern recognition based system has uncertainty such as miss detections or false detections. By lowering threshold level for the detection, miss detections increase while false detection decrease. By elevating threshold level for the detection, miss detections decrease while false detection increase. Therefore, it is important to optimize parameters for pattern recognition in order to make the system most agreeable for the drivers. By the driving simulation, we determined the most appropriate parameters for the shock wave detection systems, and we validated the optimized system by applying to six months traffic data. Less
在这个项目中,我们的目标是通过采用视觉传感器和超声波传感器等不同类型的传感器网络来开发用于辅助驾驶员的广域交通事件检测系统。我们安装了事件检测系统来收集事故的图像数据,并进行了调查。获取事故图像以揭示引发事故的机制通过调查,揭示了一个有趣的机制,即下游交通的微小破坏行为引起的冲击波在传播到上游交通的过程中被放大,并且冲击波应该是造成事故的主要因素。发生的事故因此,我们开发了传感器融合网络系统,以尽快检测这种冲击波的传播。传感器融合网络系统采用了两公里长的图像传感器和超声波传感器,并将传感器收集的数据汇总起来。图像传感器能够获取每辆车的轨迹和每条车道的车辆数量,而超声波传感器能够获取每辆车的速度和每条车道的车辆数量。计算自通过总结来自传感器的速度和车辆,我们开发了一种算法来预测由冲击波传播引起的每个位置的状态转换,该算法通过划分代表速度和车辆的时空立方体来定义盒子。每个位置每次的车辆数量,并通过学习六个月的状态转换数据来建模状态转换。因此,我们的算法能够以 85-90% 的成功率预测每个位置每次的状态。最后,我们通过雇用四十名不同年龄的男性和女性监控驾驶员来检查驾驶员支持系统的效果。一般来说,这种基于模式识别的系统存在诸如漏检或误检的不确定性。通过提高检测阈值,误检测会减少,而误检测会增加。因此,优化模式识别参数以使系统最适合驾驶员非常重要。驾驶模拟,我们确定了冲击波检测系统最合适的参数,并通过应用六个月的交通数据来验证优化的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ネットワーク信号制御を目的とした画像センサによる旅行時間計測
使用图像传感器测量行程时间以进行网络信号控制
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    黒岩久人;藤村嘉一;上條俊介
  • 通讯作者:
    上條俊介
Semantic Hierarchy Based Reasoning Chain Systems Algorithm for Event Detection on an Intersection
基于语义层次的交叉路口事件检测推理链系统算法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Inoue;Mingzhe Liu;Shunsuke Kamijo;Shunsuke Kamijo
  • 通讯作者:
    Shunsuke Kamijo
Travelling time measurement by using dynamic programming matching of vehicle feature sequence
利用车辆特征序列动态规划匹配进行行驶时间测量
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisato Kuroiwa;Takanori Kawahara;Shunsuke Kamijo
  • 通讯作者:
    Shunsuke Kamijo
Development and evaluation of real-time video surveillance system on highway based on semantic hierarchy and decision surface
Directional Travel Time Measurement by SurveMance Camera Network
通过 SurveMance 摄像头网络进行定向行程时间测量
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisato Kuroiwa;Shunsuke Kamijo
  • 通讯作者:
    Shunsuke Kamijo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMIJO Shunsuke其他文献

KAMIJO Shunsuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAMIJO Shunsuke', 18)}}的其他基金

Research on System Integration of Multiple Sensors for Collision Avoidance
多传感器防撞系统集成研究
  • 批准号:
    24300069
  • 财政年份:
    2012
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hierarchical Study on Protein Functional Mechanism
蛋白质功能机制的层次研究
  • 批准号:
    22651079
  • 财政年份:
    2010
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of the methods for tracking and behavior understanding of vehicles and pedestrians in urban traffic scenes
城市交通场景中车辆和行人的跟踪和行为理解方法的开发
  • 批准号:
    14580407
  • 财政年份:
    2002
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于主动式电光可调有机半导体异质结的神经网络视觉传感器
  • 批准号:
    62304013
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“惯导-雷达-视觉”多传感器融合的煤矿钻锚机器人精确定位方法研究
  • 批准号:
    52374161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于机器视觉和接触式传感器融合的奶牛行为识别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
感知—编码一体神经形态视觉传感器的构筑及光电作用机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于仿生视觉特性的弱对比纹理增强视觉传感器研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

On-Sensor Computer Vision
传感器计算机视觉
  • 批准号:
    EP/Y022629/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Research Grant
On-Sensor Computer Vision
传感器计算机视觉
  • 批准号:
    EP/Y023048/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Continuing Grant
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
  • 批准号:
    10637293
  • 财政年份:
    2023
  • 资助金额:
    $ 10.32万
  • 项目类别:
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
  • 批准号:
    10637093
  • 财政年份:
    2023
  • 资助金额:
    $ 10.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了