Elliptic quantum groups, deformed W algebras of type D and their applications to the analysis of Baxter's eight-vertex model

椭圆量子群、D型变形W代数及其在巴克斯特八顶点模型分析中的应用

基本信息

项目摘要

The aim of this project is to study the correlation functions for Baxter's eight-vertex model, by applying the representation theory of the deformed W-algebras of type D. Here, the deformed W-algebras are certain variation of the so-called elliptic quantum groups, which are defined by specifying a set of elliptic functions (structure functions). I summarize my results in what follows.(1) Using the deformed W-algebras, the vertex operators for Baxter's eight-vertex model are explicitly constructed. The rank of the W-algebra is determined by the arithmetic property of the so-called crossing parameter of the model.(2) It is conjectured that the matrix elements of the vertex operators are uniquely characterized by a certain integral transformation, which commutes with the action of the Macdonald difference operators. We can regard the problem a discrete analogue of the initial value problem associated with integrable dynamical systems.(3) To find a proof of the above conjecture, I studied … More the eigenvalue problem associated with the integral operator, and the Macdonald difference operators acting on the space of formal power series (not on the space of the symmetric polynomials). Not only the case of A-type root lattice, I treated the case of B, C, D, and the BC case, too. I found several quite nontrivial explicit formulas for such series by using computer algebra. Hence, I started to have communication with M. Noumi and found the kernel functions for the Koornwinder difference operator. As an application we found explicit formulas for the Koornwinder polynomials associated with single row and single column cases(4) I studied the integrals of motion associated with the deformed W-algebras. By taking a classical limit, I derived an integrable hierarchy whish is described by the Sato theory with a certain reduction condition. The tau-function of this system satisfied a version of the Hirota-Miwa bilinear equation. In some degeneration limits, I found that a class of special solutions to the bilinear equation can be constructed, and the corresponding integrals of motion can be explicitly calculated. The results indicate that the classical mechanical object have a good amount of information which Macdonald polynomials or Hall-Littlewood polynomials have. Less

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koornwinderのq差分作用素の核函数とその応用
Koornwinder的q差分算子核函数及其应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Saigo;Sh.Owa;V.Kiryakova;野海 正俊
  • 通讯作者:
    野海 正俊
Kernel function for Koornwinder's operator and their applications
Koornwinder 算子的内核函数及其应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NOUMI;Masatoshi;SHIRAISHI;Jun'ichi
  • 通讯作者:
    Jun'ichi
Free field constructions for the elliptic algebra ${\calA}_{q, p}(\widehat{ sl}_2)$ and Baxter's eight-vertex model
椭圆代数 ${calA}_{q, p}(widehat{ sl}_2)$ 和 Baxter 八顶点模型的自由场构造
Deformed W-algebra and correlation functions for Baxter's eight vertex model
Baxter 八顶点模型的变形 W 代数和相关函数
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sh.Owa;M.Acu;白石潤
  • 通讯作者:
    白石潤
A Conjecture about Raising Operators for Macdonald Polynomials
麦克唐纳多项式算子的提升猜想
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arnaudon;Daniel;Avan;Jean;Frappat;Luc;Ragoucy;Eric;Shiraishi;Junichi;Jun'ichi Shiraishi et al.;Saburo Kakei;Jun'ichi Shiraishi
  • 通讯作者:
    Jun'ichi Shiraishi
共 10 条
  • 1
  • 2
前往

相似海外基金

Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
  • 批准号:
    20K03507
    20K03507
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Representation theory of Elliptic Quantum Groups and Deformation of W-algebra
椭圆量子群的表示论与W-代数的变形
  • 批准号:
    15540033
    15540033
  • 财政年份:
    2003
  • 资助金额:
    $ 2.48万
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Representation Theory of Elliptic Quantum Groups and the Elliptic q-KZB Equation
椭圆量子群的表示论和椭圆q-KZB方程
  • 批准号:
    14540028
    14540028
  • 财政年份:
    2002
  • 资助金额:
    $ 2.48万
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Algebraic and geometric aspects of string dualities
弦对偶性的代数和几何方面
  • 批准号:
    13640264
    13640264
  • 财政年份:
    2001
  • 资助金额:
    $ 2.48万
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)