Elliptic quantum groups, deformed W algebras of type D and their applications to the analysis of Baxter's eight-vertex model
椭圆量子群、D型变形W代数及其在巴克斯特八顶点模型分析中的应用
基本信息
- 批准号:16540183
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to study the correlation functions for Baxter's eight-vertex model, by applying the representation theory of the deformed W-algebras of type D. Here, the deformed W-algebras are certain variation of the so-called elliptic quantum groups, which are defined by specifying a set of elliptic functions (structure functions). I summarize my results in what follows.(1) Using the deformed W-algebras, the vertex operators for Baxter's eight-vertex model are explicitly constructed. The rank of the W-algebra is determined by the arithmetic property of the so-called crossing parameter of the model.(2) It is conjectured that the matrix elements of the vertex operators are uniquely characterized by a certain integral transformation, which commutes with the action of the Macdonald difference operators. We can regard the problem a discrete analogue of the initial value problem associated with integrable dynamical systems.(3) To find a proof of the above conjecture, I studied … More the eigenvalue problem associated with the integral operator, and the Macdonald difference operators acting on the space of formal power series (not on the space of the symmetric polynomials). Not only the case of A-type root lattice, I treated the case of B, C, D, and the BC case, too. I found several quite nontrivial explicit formulas for such series by using computer algebra. Hence, I started to have communication with M. Noumi and found the kernel functions for the Koornwinder difference operator. As an application we found explicit formulas for the Koornwinder polynomials associated with single row and single column cases(4) I studied the integrals of motion associated with the deformed W-algebras. By taking a classical limit, I derived an integrable hierarchy whish is described by the Sato theory with a certain reduction condition. The tau-function of this system satisfied a version of the Hirota-Miwa bilinear equation. In some degeneration limits, I found that a class of special solutions to the bilinear equation can be constructed, and the corresponding integrals of motion can be explicitly calculated. The results indicate that the classical mechanical object have a good amount of information which Macdonald polynomials or Hall-Littlewood polynomials have. Less
该项目的目的是通过应用 D 型变形 W 代数的表示论来研究 Baxter 八顶点模型的相关函数。这里,变形 W 代数是所谓的椭圆量子的某些变体群,它们是通过指定一组椭圆函数(结构函数)来定义的。我在下面总结了我的结果。(1)使用变形的 W 代数,顶点算子Baxter的八顶点模型被明确地构造出来,W-代数的秩由模型的所谓交叉参数的算术性质决定。(2)推测顶点算子的矩阵元素具有唯一的特征。通过一定的积分变换,它与麦克唐纳差分算子的作用进行交换。我们可以将这个问题视为与可积动力系统相关的初始值问题的离散模拟。(3)找到上述问题的证明。猜想,我研究了与积分算子相关的特征值问题,以及作用于形式幂级数空间(而不是对称多项式空间)的麦克唐纳差分算子,不仅是 A 型根格的情况,我也处理了 B、C、D 的情况,以及 BC 的情况,我通过计算机代数找到了几个非常重要的显式公式,因此,我开始与 M. Noumi 进行交流,并找到了作为一个应用,我们发现了与单行和单列情况相关的 Koornwinder 多项式的显式公式 (4) 我研究了与变形 W 代数相关的运动积分。我推导了佐藤理论在一定的简化条件下描述的可积层次结构,该系统的 tau 函数满足 Hirota-Miwa 双线性方程的某种退化。极限,我发现可以构造一类双线性方程的特殊解,并且可以显式计算相应的运动积分。结果表明,经典机械对象具有麦克唐纳多项式或 Hall-Littlewood 的大量信息。多项式有。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koornwinderのq差分作用素の核函数とその応用
Koornwinder的q差分算子核函数及其应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M.Saigo;Sh.Owa;V.Kiryakova;野海 正俊
- 通讯作者:野海 正俊
Kernel function for Koornwinder's operator and their applications
Koornwinder 算子的内核函数及其应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:NOUMI;Masatoshi;SHIRAISHI;Jun'ichi
- 通讯作者:Jun'ichi
Free field constructions for the elliptic algebra ${\calA}_{q, p}(\widehat{ sl}_2)$ and Baxter's eight-vertex model
椭圆代数 ${calA}_{q, p}(widehat{ sl}_2)$ 和 Baxter 八顶点模型的自由场构造
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:SHIRAISHI;Jun'ichi
- 通讯作者:Jun'ichi
Deformed W-algebra and correlation functions for Baxter's eight vertex model
Baxter 八顶点模型的变形 W 代数和相关函数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Sh.Owa;M.Acu;白石潤
- 通讯作者:白石潤
A Conjecture about Raising Operators for Macdonald Polynomials
麦克唐纳多项式算子的提升猜想
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Arnaudon;Daniel;Avan;Jean;Frappat;Luc;Ragoucy;Eric;Shiraishi;Junichi;Jun'ichi Shiraishi et al.;Saburo Kakei;Jun'ichi Shiraishi
- 通讯作者:Jun'ichi Shiraishi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIRAISHI Jun'ichi其他文献
SHIRAISHI Jun'ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of Elliptic Quantum Groups and Deformation of W-algebra
椭圆量子群的表示论与W-代数的变形
- 批准号:
15540033 - 财政年份:2003
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory of Elliptic Quantum Groups and the Elliptic q-KZB Equation
椭圆量子群的表示论和椭圆q-KZB方程
- 批准号:
14540028 - 财政年份:2002
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and geometric aspects of string dualities
弦对偶性的代数和几何方面
- 批准号:
13640264 - 财政年份:2001
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)