Research on derivations of Bayes estimators with decision-theoretical optimality and their applications

决策理论最优性贝叶斯估计量的推导及其应用研究

基本信息

  • 批准号:
    16500172
  • 负责人:
  • 金额:
    $ 2.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

The usefulness of the Bayesian procedures has been recently recognized from practical aspects. In this research project, I have shown the optimality of the Bayesian procedures from a decision-theoretic view point in several statistical problems as well as the usefulness in applications. The details are given below:1) In the estimation of a mean vector of a multivariate normal distribution, the characterization of the prior distributions has been given so that the resulting Bayes estimator is minimax and/or admissible. When the prior distribution has a hierarchical structure, I have derived conditions under which the hierarchical Bayes estimators are minimax.2) In the estimation of the component of covariance matrix in a multivariate linear mixed model, I have established a unified theory for the improvement through the truncated method. This problem is related to the estimation of the covariance matrices under the inequality restriction. I have considered several estimation problems under parametric restrictions and have shown the dominance results of Bayesian estimators. Also I have obtained the empirical Bayes estimator of the covariance matrix in the high dimensional cases and shown the theoretical optimality as well as the practical usefulness in data analysis.3) In the nested error regression model, I have derived the information criterion for selecting explanatory variables. This model is useful in the small area problem, and I have constructed an asymptotically corrected confidence interval of the small area mean and an asymptotically corrected test statistic for the linear hypothesis.
贝叶斯程序的实用性最近从实际方面得到了认可。在该研究项目中,我从几个统计问题的决策理论观点以及应用程序中的实用性中展示了贝叶斯程序的最佳性。详细信息如下:1)在估计多元正态分布的平均向量时,已经给出了先前分布的表征,以使所得的贝叶斯估计量是最小值和/或可接受的。当先前的分布具有层次结构时,我具有得出的条件,在该条件下,在多变量线性混合模型中,在对协方差矩阵的估计中,我已经建立了一个通过改进的理论,以通过改进的理论,以改善协方差矩阵。截断方法。此问题与在不平等限制下对协方差矩阵的估计有关。我考虑了参数限制下的几个估计问题,并显示了贝叶斯估计器的优势结果。另外,我在高维情况下获得了协方差矩阵的经验贝叶斯估计器,并显示了理论最优性以及数据分析中的实际实用性。3)在嵌套的误差回归模型中,我得出了选择解释性的信息标准变量。该模型在小面积问题中很有用,我已经构建了小面积均值的渐近校正置信区间,并为线性假设构建了渐近校正的测试统计量。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
線形混合モデルと小地域の推定
线性混合模型和小区域估计
モデル選択-予測・検定・推定の交差点-
模型选择——预测、测试和估计的交叉点——
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    下平英寿;伊藤秀一;久保川達也;竹内啓
  • 通讯作者:
    竹内啓
Estimation in a linear regression model under the Kullback-Leibler loss and its application to model selection
Kullback-Leibler 损失下线性回归模型的估计及其在模型选择中的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mostafa Al Masum Shaikh;Helmut Prendinger;Mitsuru Ishizuka;和泉 諭;T.Kubokawa and H.Tsukuma
  • 通讯作者:
    T.Kubokawa and H.Tsukuma
Linear Mixed Model and Small Area Estimation
线性混合模型和小面积估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kubokawa;M.S.Srivastava;T.Kubokawa;久保川 達也;T. Kubokawa
  • 通讯作者:
    T. Kubokawa
Minimax multivariate empirical Bayes estimators under multicollinearlity
多重共线性下的极小极大多元经验贝叶斯估计
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kubokawa;M.-T.Tsai(共著);久保川 達也;M.S. Srivastava(共著);M. S. Srivastava and T. Kubokawa
  • 通讯作者:
    M. S. Srivastava and T. Kubokawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUBOKAWA Tatsuya其他文献

KUBOKAWA Tatsuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUBOKAWA Tatsuya', 18)}}的其他基金

New developments of theories in multivariate statistical inference and their applications
多元统计推断理论新进展及其应用
  • 批准号:
    21540114
  • 财政年份:
    2009
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESARCH ON NEW DEVELOPMENTS OF ESTIMATION THEORY AND THEIR APPLICATIONS IN MULTI-DIMENSIONAL STATISTICAL MODELS
估计理论新进展及其在多维统计模型中的应用研究
  • 批准号:
    13680371
  • 财政年份:
    2001
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESARCH ON THE THEORY AND APPLICATIONS OF EFFICIENT BAYES ESTIMATORS IN MULTIVARIATE STATISTICAL MODELS
多元统计模型中有效贝叶斯估计量的理论与应用研究
  • 批准号:
    11680320
  • 财政年份:
    1999
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

统计决策和小样本推断中的几个问题
  • 批准号:
    19871088
  • 批准年份:
    1998
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Discovery Projects
Mostly Harmless Statistical Decision Theory
基本无害的统计决策理论
  • 批准号:
    2315600
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Standard Grant
A Neuroecological Approach to Examining the Effects of Early Life Adversity on Adolescent Drug Use Vulnerabilities Using the ABCD Dataset
使用 ABCD 数据集检查早期生活逆境对青少年吸毒脆弱性影响的神经生态学方法
  • 批准号:
    10803675
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
  • 批准号:
    10507532
  • 财政年份:
    2022
  • 资助金额:
    $ 2.41万
  • 项目类别:
Hippocampo-cortical contributions to world building in freely behaving macaques
海马皮质对自由行为的猕猴世界建设的贡献
  • 批准号:
    10447412
  • 财政年份:
    2022
  • 资助金额:
    $ 2.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了