The Frontier of Numerical Analysis for Dynamics of Interfaces and Developments in Sciences and Engineering

界面动力学数值分析前沿及科学与工程发展

基本信息

项目摘要

We were concerned with the following numerical methods to the phenomena appearing in the repre-sentative dynamical interfaces :i) Pattern dynamics in the reaction-diffusion system,ii) Viscous fingering phenomena in Hele-Shaw Cell,iii) Dynamical behavior of the region occupied by the water in the process of evaporation.We obtained several results :1) The TCD (Threshold Competition Dynamics) method is developed for the numerical computation in reaction-diffusion system, and enables us to realize the dynamical behavior of free boundary in R^n (n=1, 2, 3.). The idea of this method is based on the theory of "Singular limit method".2) The mathematical model for the crystal growth is considered in the, form of the reaction-diffusion equation with the effect of a convection, and gives us interesting mathematical results.3) In viscous fingering phenomena, the buoyancy-driven path instabilities of bubble rising in Hele-Shaw Cell are examined. As an interesting phenomenon there appears a wake which is similar to a comet. However, such a wake is not realized in numerical method yet.4) Multi-scale FEM based on crystallographic homogenization method is developed to predict the dynamics of interfaces in the formability of sheet metal.5) The repeated support splitting and connecting property in the process of evaporation is investigated, where the the support means the region occupied by the water. The numerical methods for this process are established and the shape of the initial distribution for which such a property appear is explicitly obtained.
我们关注以下在代替式动态界面中出现的现象的数值方法:i)反应扩散系统中的模式动态,ii)Hele-Shaw细胞中的粘性指法现象,iii)在蒸发过程中由水占据的区域的动力学行为。我们获得了几个结果。系统,使我们能够实现r^n中自由边界的动态行为(n = 1,2,3。)。该方法的概念基于“单数极限方法”的理论。2)晶体生长的数学模型以对流的影响为反应扩散方程的形式,并给予了我们有趣的数学结果。33)在粘性指法现象中,浮标驱动的驱动式路径在Hele-Shaw Cell中的泡泡式路径升高。作为一个有趣的现象,似乎唤醒与彗星相似。然而,在数值方法中尚未实现这种唤醒。4)基于晶体均质均质化方法的多尺度FEM开发出来预测碎片金属可成形性的界面动力学。5)5)在研究蒸发过程中的重复支撑和连接属性,在研究的地方意味着在水上占据了支持的区域。建立了此过程的数值方法,并明确获得了该特性出现的初始分布的形状。

项目成果

期刊论文数量(554)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustness of a Characteristic Finite Element Scheme of Second Order in Time Increment
  • DOI:
    10.1007/3-540-31801-1_22
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Tabata;S. Fujima
  • 通讯作者:
    M. Tabata;S. Fujima
Numerical simulation of spilled oil by fictitious domain method
Chemotaxis and growth system with singular sensitivity function
  • DOI:
    10.1016/j.nonrwa.2004.08.011
  • 发表时间:
    2005-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
  • 通讯作者:
    M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
自己組織化とは何か
什么是自组织?
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Yu.Orlov;T.Shiota;山口 智彦
  • 通讯作者:
    山口 智彦
有界化法による微分方程式の数値計算
用有界法数值计算微分方程
共 334 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 67
前往

TOMOEDA Kenji的其他基金

Numerical analysis to support splitting and merging phenomena in interfacial dynamics
支持界面动力学中分裂和合并现象的数值分析
  • 批准号:
    23540171
    23540171
  • 财政年份:
    2011
  • 资助金额:
    $ 10.26万
    $ 10.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Development of Numerical Methods for Dynamics of Interfaces and its Applications to Experiments in Science and Engineering
界面动力学数值方法的发展及其在科学与工程实验中的应用
  • 批准号:
    13440038
    13440038
  • 财政年份:
    2001
  • 资助金额:
    $ 10.26万
    $ 10.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Experimental, numerical and mathematical approach to the complexity of the phenomena of interfaces
界面现象复杂性的实验、数值和数学方法
  • 批准号:
    11440035
    11440035
  • 财政年份:
    1999
  • 资助金额:
    $ 10.26万
    $ 10.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
    Grant-in-Aid for Scientific Research (B).

相似海外基金

High Rate Growth of Large Diameter and High Quality Li_2B_4O_7 Piezoelectric Crystals and Practical Research on SAW Devices
大直径高质量Li_2B_4O_7压电晶体的高速生长及声表面波器件的实用研究
  • 批准号:
    03555060
    03555060
  • 财政年份:
    1991
  • 资助金额:
    $ 10.26万
    $ 10.26万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
    Grant-in-Aid for Developmental Scientific Research (B)