Signal transduction of clock genes in molecular clock
分子钟中时钟基因的信号转导
基本信息
- 批准号:15200025
- 负责人:
- 金额:$ 30.53万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cellular events must be organized in the time dimension as well as in the space dimension for many proteins to perform their cellular functions effectively. The intracellular molecular oscillating loops that comprise the cell's circadian clock coordinate the timing of the expression of a variety of genes with basic or specific cellular functions. In mammals, the temporal pattern of clock gene expression generated in each SCN neuron is coupled to those of other cells and amplified, spreads its signals through the brain, and then, via glucocorticoids and sympathetic nerves, to peripheral organs. These peripheral organs have their own circadian clocks. In some tissues, such as liver, there is also a clock regulating cell cycle, which interacts strongly with the components and temporal organization of the circadian clock. Some tissues, however, such as testis, express clock genes whose function, if any, remains unclear. Furthermore, circadian clock function may be suspended in differentiat … More ing tissue. Thus, the prominence of circadian organization may not apply equally to all tissues under all conditions.If the cell cycle is intimately linked to the circadian clock, then it should be interesting to examine clock genes in rapidly replicating and differentiating tissues such as gonads. In testis where sper, matogeneis rapidly occurs, mPer1 and Clock genes are expressed constantly high. During somite genesis in mouse embryos, it is known that a pair of somites buds off from the presomitic mesoderm every 2 hours, suggesting that somite segmentation is controlled by a biological clock with a 2-hour cycle. The novel bHLH Hes genes show cyclic expression (every 2 hours) in the somite forming process. The somite clock Hes7 gene is located just downstream of mPer1. Interestingly, the Hes6 and mPer2 genes are also close to each other, only 2.8kbp apart. In the developing brain, it is known that neuronal stem cells express Hes1 and Hes6 genes abundantly in the proliferating and differentiating stages, but their expressions were faint after maturation of neurons. In contrast, Per1 and Per2 genes are expressed after completion of neurogenesis, and increased as their growth.One speculative explanation for such segregation of gene expression involves genome-segregating factors. In the study of the chicken β-globulin gene, insulator DNA elements were found to protect transcribed region from outside regulatory influences. They are present near chromatin domain boundaries or at sites where they prevent inappropriate activation of a promoter by a nearby heterogenous enhancer. In another example, the DNA-binding protein CTCF, which acts as a chromatin 'insulator, regulates imprinting of the mammalian Igf2 and H19 genes in a methylation-sensitive manner. If such genome segregating factors exist between the Per and Hes genes, one could imagine that the "24h-slow" circadian clock is switched off in developing tissue, allowing the "2h-rapid" clock to work. After morphogenesis, the "2h-rapid" clock involving Hes is switched off, and the "24h-slow" circadian clock involving mPer genes are switched on to adapt to the day-night environmental cycle. This scheme might apply to other rapidly differentiating tissues, although the expression dynamics of the Hes genes are not known for most organs. The silencing of Per genes in differentiating tissue could explain the enigma of why wee1 mediated G2 to M gating is not essential for coordinating cell division. Also, it would explain why embryogenesis seems to be perfectly normal in clock-less mutant mice. Less
细胞事件必须在时间维度和空间维度上组织起来,许多蛋白质才能有效地发挥其细胞功能。构成细胞生物钟的细胞内分子振荡环与基本的各种基因的表达时序相协调。在哺乳动物中,每个 SCN 神经元产生的时钟基因表达的时间模式与其他细胞的时钟基因表达模式耦合并放大,将其信号传播到大脑,然后通过糖皮质激素和交感神经传播。这些外周器官有自己的生物钟,例如肝脏,也有一个时钟调节细胞周期,但它与生物钟的组成部分和时间组织有强烈的相互作用。睾丸等表达的时钟基因的功能(如果有的话)仍不清楚。此外,生物钟功能可能暂停在分化组织中,因此,昼夜节律组织的重要性可能不适用于所有组织。如果细胞周期与生物钟密切相关,那么检查快速复制和分化的组织(如性腺)中的时钟基因应该很有趣。在睾丸中,sper、matogeneis 迅速发生,mPer1 和 Clock 基因不断表达。在小鼠胚胎的体节发生过程中,每 2 小时就会从前体中胚层中萌芽出一对体节,这表明体节的分割是受到控制的。新型 bHLH Hes 基因在体节形成过程中表现出周期性表达(每 2 小时),体节时钟 Hes7 基因位于 mPer1 的下游,也彼此接近。众所周知,在发育中的大脑中,神经干细胞在增殖和分化阶段大量表达 Hes1 和 Hes6 基因,但它们的表达却不同。相比之下,Per1 和 Per2 基因在神经发生完成后表达,并随着它们的生长而增加。在鸡 β 的研究中,对这种基因表达分离的一种推测性解释涉及基因组分离因子。球蛋白基因、绝缘子 DNA 元件被发现可以保护转录区域免受外界调控的影响,它们存在于染色质结构域边界附近或防止附近异源增强子不适当激活启动子的位点。 DNA 结合蛋白 CTCF 作为染色质绝缘体,以甲基化敏感的方式调节哺乳动物 Igf2 和 H19 基因的印记,如果 Per 和 Hes 基因之间存在这种基因组分离因子,人们可以想象“24h”。 -“慢”生物钟在发育中的组织中被关闭,允许“2小时快速”时钟工作。形态发生后,“2小时快速”时钟涉及Hes 被关闭,涉及 mPer 基因的“24 小时慢”生物钟被打开以适应昼夜环境周期。尽管 Hes 基因的表达动态并不适用,但该方案可能适用于其他快速分化的组织。 Per 基因在分化组织中的沉默可以解释为什么 wee1 介导的 G2 到 M 门控对于协调细胞分裂并不重要。在无时钟突变小鼠中完全正常。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
時計遺伝子の分子生物学
时钟基因的分子生物学
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yamamoto Y;Okamura H;Okamura H;岡村 均;岡村 均;Dong X;岡村 均編
- 通讯作者:岡村 均編
体内時計による内分泌・自律神経の生体リズムの制御
通过生物钟控制内分泌和自主神经生物节律
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yamamoto Y;Okamura H;Okamura H;岡村 均;岡村 均
- 通讯作者:岡村 均
Integration of molecular rhythms in the mammalian circadian system. In Molecular Clocks and Light Signaling
哺乳动物昼夜节律系统中分子节律的整合。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:E.Andaroodi;F.Andres;K.Ono;P.Lebigre;Okamura H
- 通讯作者:Okamura H
Expression of ubiquitin-related enzymes in the suprachiasmatic nucleus with special reference to ubiquitin carboxy-terminal hydrolase UchL1.
泛素相关酶在视交叉上核中的表达,特别是泛素羧基末端水解酶 UchL1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Yamamoto Y;Okamura H;Okamura H;岡村 均;岡村 均;Dong X
- 通讯作者:Dong X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKAMURA Hitoshi其他文献
OKAMURA Hitoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKAMURA Hitoshi', 18)}}的其他基金
Epigenetics of developmental abnormality of biological rhythms
生物节律发育异常的表观遗传学
- 批准号:
26560460 - 财政年份:2014
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Alternation of organ function in mice of jet-lag model
时差模型小鼠器官功能的变化
- 批准号:
25560426 - 财政年份:2013
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Detection of circadian rhythms from peripheral blood samples in the diagnosis of diseases of elderly people
外周血样本昼夜节律检测在老年人疾病诊断中的应用
- 批准号:
24650217 - 财政年份:2012
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
SCN-Gene-Project: Molecular analysis of biological rhythms
SCN-Gene-Project:生物节律的分子分析
- 批准号:
24240058 - 财政年份:2012
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Construction of a training program to improve physical conditions and mental health in frail elderly persons.
制定改善体弱老年人身体状况和心理健康的培训计划。
- 批准号:
19200048 - 财政年份:2007
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular Clocks to Biological Rhythms
分子钟与生物节律
- 批准号:
18002016 - 财政年份:2006
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Specially Promoted Research
Construction of a system to assess and improve cognitive impairment in elderly people with dementia
评估和改善痴呆老年人认知障碍的系统构建
- 批准号:
17300219 - 财政年份:2005
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Psychosocial aspects after disclosure of genetic test results regarding hereditary cancer and construction of cancer genetic counseling system
遗传性癌症基因检测结果公开后的心理问题及癌症遗传咨询体系的构建
- 批准号:
14370139 - 财政年份:2002
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular Biology of the Biological Clock : From Gene to Behavior
生物钟的分子生物学:从基因到行为
- 批准号:
11470018 - 财政年份:1999
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Molecular analysis of the mammalian circulation rhythm
哺乳动物循环节律的分子分析
- 批准号:
09480212 - 财政年份:1997
- 资助金额:
$ 30.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
基于下丘脑视交叉上核睡眠节律调节功能研究和胃安神方治疗失眠症的作用机制
- 批准号:82174283
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
基于视交叉上核-外侧缰核环路探讨蒙医三根平衡针法抗抑郁的作用机制
- 批准号:82160953
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
垂体腺苷酸环化酶激活肽在光-ipRGCs-VIP介导的光授时信号传导通路中的作用及机制研究
- 批准号:31800997
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
抑郁症昼夜节律变化的视交叉上核gamma波脑网络的调控机制
- 批准号:81871066
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
锌指蛋白ZBTB20对行为昼夜节律的调节作用及其机制研究
- 批准号:31671219
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of circadian physiology by rhythmic food intake and the mTOR pathway
通过有节律的食物摄入和 mTOR 通路调节昼夜节律生理学
- 批准号:
10367363 - 财政年份:2022
- 资助金额:
$ 30.53万 - 项目类别:
The role of circadian clock proteins in innate and adaptive immunity
生物钟蛋白在先天性和适应性免疫中的作用
- 批准号:
10582781 - 财政年份:2022
- 资助金额:
$ 30.53万 - 项目类别:
Regulation of circadian physiology by rhythmic food intake and the mTOR pathway
通过有节律的食物摄入和 mTOR 通路调节昼夜节律生理学
- 批准号:
10579228 - 财政年份:2022
- 资助金额:
$ 30.53万 - 项目类别:
The Effect of mWAKE in the Subfornical Organ on the Circadian Regulation of Water Consumption
穹窿下器官 mWAKE 对耗水量昼夜节律调节的影响
- 批准号:
10464743 - 财政年份:2022
- 资助金额:
$ 30.53万 - 项目类别:
The Effect of mWAKE in the Subfornical Organ on the Circadian Regulation of Water Consumption
穹窿下器官 mWAKE 对耗水量昼夜节律调节的影响
- 批准号:
10626773 - 财政年份:2022
- 资助金额:
$ 30.53万 - 项目类别: