On the scattering theory and the singular perturbations for the self-adjoint operators

关于散射理论和自伴算子的奇异摄动

基本信息

  • 批准号:
    14540183
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1. The H-2-construction to treat the singular perturbation for the self-adjoint operator by the operator theoretical method has been studied by K. Watanabe. The author obtains some results for the operator, for example, necessary and sufficient condition of the existence of embedded eigenvalues, representation of the scattering matrix and etc.2. The regularity of the solutions for the Maxwell, Stokes and Navier-Stokes equation with the interface has been investigated by K. Watanabe. Especially the following results is remarkable : if the tangential component does not have the singularity, then the regularity of the solution gains rank one.3. The partial differential equation with the dissipative term has been studied by K. Watanabe. The relationship of this spectrum type and the behavior of the time decay of the solutions has been studied.4. Krein's formula (which is a generalization of the second resolvent equation) was studied by S.T. Kuroda and published5. The finite elements method for the bi-harmonic Dirichlet problems on the polygon in the plane (not necessary convex) has been studied by A. Mizutani.6. The behaviors of the solution at the time infinity for the system of the nonlineat partial differential equations (for example, the coupled Schrodinger and Klein-Goldon) have been studied by A. Shimura and published.7. The regularity and the uniqueness for the initial date problems of the Euler equation have been studied by T. Ogawa and published.8. The scattering theory for the dissipative system has been studied by M. Kadowaki and published.
1. K. Watanabe研究了用算子理论方法处理自伴算子奇异摄动的H-2-结构。作者得到了该算子的一些结果,如嵌入特征值存在的充要条件、散射矩阵的表示等。 2. K. Watanabe 研究了具有界面的麦克斯韦、斯托克斯和纳维-斯托克斯方程的解的规律性。特别是下面的结果是显着的:如果切向分量不具有奇异性,那么解的正则性获得等级1.3。 K. Watanabe 研究了带有耗散项的偏微分方程。研究了该谱类型与解的时间衰减行为的关系。 4. S.T. 研究了 Krein 公式(第二个求解方程的推广)。黑田东彦并发表5。 A. Mizutani研究了平面多边形(不一定是凸)上的双调和狄利克雷问题的有限元方法。6. A. Shimura 研究了非线性偏微分方程组(例如耦合的薛定谔和克莱因-戈登)在无穷大时间解的行为并发表了7. T. Okawa研究并发表了欧拉方程初始日期问题的规律性和唯一性。8. M. Kadowaki 研究并发表了耗散系统的散射理论。

项目成果

期刊论文数量(94)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Shimomura: "Scattering theory for Zakharov equations in three space dimensions with large data"Commun.ContemMath.. (to appear).
A.Shimomura:“具有大数据的三维空间中扎哈罗夫方程的散射理论”Commun.ContemMath..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ogawa: "Analytic smoothing effect forthe Benjamin- Ono equation"in "Toshio Kato's Method and Principle for Evolution Equations in Mathematical Physics" H.Fujita, S.T.Kuroda, H.Okamoto Eds.. 113-126 (2002)
T.Okawa:“本杰明-小野方程的解析平滑效应”,《加藤俊夫数学物理演化方程的方法和原理》 H.Fujita、S.T.Kuroda、H.Okamoto Eds.. 113-126 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Nakamura, A.Shimomura: "Local well-posedness and smoothing effects of strong solutions for nonlinear Schrodinger equations with potentials and magnetic fields"Hokkaido Math.J. (to appear).
Y.Nakamura、A.Shimomura:“具有势和磁场的非线性薛定谔方程的强解的局部适定性和平滑效应”Hokkaido Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kurokiba, T.Ogawa: "Finite time blow-up of the solution for the nonlinearparabolic equation of the drift diffusion type"Diff.Integral Equations. vol.16. 427-452 (2003)
M.Kurokiba、T.Okawa:“漂移扩散型非线性抛物型方程解的有限时间放大”Diff.Integral Equations。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Tanaka: "The Fefferman-Stein-Type inequality for the Kakeya maximal operator II"Acta Math.Sinica. vol.18. 447-454 (2002)
H.Tanaka:“Kakeya 极大算子 II 的 Fefferman-Stein 型不等式”数学学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Kazuo其他文献

WATANABE Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Kazuo', 18)}}的其他基金

Assessment on influence of rural development and international economy over existence of plant use and its traditional knowledge at marginal and minority areas
评估农村发展和国际经济对边缘和少数民族地区植物利用及其传统知识存在的影响
  • 批准号:
    25257416
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a split-pair type 25T cryogen-free superconducting magnet
分裂对型25T无制冷剂超导磁体的研制
  • 批准号:
    25246032
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of economic, social and technical backgrounds on continuation of subsistence rice farming during rapid economic growth in Thailand -Case study in a rain-fed paddy village in Northeast Thailand-
澄清泰国经济快速增长期间继续自给稻米耕作的经济、社会和技术背景 -泰国东北部雨养稻田村的案例研究-
  • 批准号:
    22710248
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Conservation of endangered plant genetic resources and their traditional knowledge associated with minority ethnic groups beyond borderlines
保护濒危植物遗传资源及其与境外少数民族相关的传统知识
  • 批准号:
    21405017
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integration of risk assessment, management and communication on abiotic stress tolerant transgenic organisms
耐非生物胁迫转基因生物的风险评估、管理和沟通一体化
  • 批准号:
    21248001
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
On a spectral theory for operators with dissipative terms
关于具有耗散项的算子的谱理论
  • 批准号:
    20540187
  • 财政年份:
    2008
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biosafety and Risk Communication on Transgenic Plants: Application on Abiotic Stress Tolerances
转基因植物的生物安全和风险沟通:非生物胁迫耐受性的应用
  • 批准号:
    17208001
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Examining Recognition of Agricultural Genetic Resources, On-farm conservation and Uses at Union of Myanmar as a case
以缅甸联邦为例审查农业遗传资源的认可、农场保护和利用
  • 批准号:
    16405019
  • 财政年份:
    2004
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the critical current enhancement mechanism due to the repeated bending treatment for high-strength Nb_3Sn wires
阐明高强度Nb_3Sn线材反复弯曲处理的临界电流增强机制
  • 批准号:
    16360145
  • 财政年份:
    2004
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evaluation for characteristics of Bi-system high temperature superconducting wires under large electro-magnetic stress
大电磁应力下双系高温超导线材特性评估
  • 批准号:
    11650672
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于定制PINN的耦合非线性薛定谔系统中数据驱动怪波研究
  • 批准号:
    62305199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
导数非线性耗散薛定谔方程解的长时间行为
  • 批准号:
    12361051
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
非线性光学中薛定谔系统的研究
  • 批准号:
    12301090
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
薛定谔算子的特征值和特征函数
  • 批准号:
    12371097
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
  • 批准号:
    12361076
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Research on Problems Related to Random Schrodinger Operators
随机薛定谔算子相关问题的研究
  • 批准号:
    15540166
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive study of differential equations
微分方程综合研究
  • 批准号:
    11304006
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on Spectral Structure of Shrodinger Operators with Electromagnetic Fields
电磁场薛定谔算子的谱结构研究
  • 批准号:
    10640204
  • 财政年份:
    1998
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了