THE RESARCH OF PERATORS ON FUNCTION SPACES BY THE METHOD TO HARMONIC ANALYSIS AND RELATED ANALYSIS

调和分析法对功能空间算子的研究及相关分析

基本信息

项目摘要

Our purpose of this research is to study the properties of operators on function spaces by the method of harmonic analysis and related analysis. Our investigators did the research at each special point. The content is as follows:Sato studied the generalization of the relation between some operators of Hankel transforms on the positive numbers and the operators of Jacobi orthogonal system on (0,\pi). Okayasu investigated the structure of isometries on a function space and the Korovkin type linear approximation of them by contractions. Besides, he investigated the maximum part of a tuple of operators on a Hilbert space for which an indicated operator inequality holds. Mori researched about a problem of constructions of algebraically nondegenerate meromorphic mappings f of complex spaces C^m into complex projective spaces P^n(C) that for any given hypersurface D in P^n(C), f has the prescribed deficient value for D. Mizuhra showed the weak factorization theorem of H^1-functions due to Morrey functions, blocks and the Riesz potential. Also applying this result, we observed the necessity for which the commutator between the Riesz potential and a locally integrable function to be bounded on Morrey Spaces. Nakada studied some geometric properties of the Julia set of rational functions on the Riemann sphere. In particular, it is concerned with the group of euclidean motions which keep invariant the Julia set. Kawamura discussed an generalization of the theory concerning the behavior of probability density functions associated with chaotic maps on a measure space. The spaces he considered were AL and AM spaces and he generalized a convergence theory of probability density functions. Sekigawa examined some examples of transformations with torsion acting on the 3-dimensional Euclidean space by using Clifford matrix representations of M\" obius transformation.
这项研究的目的是通过谐波分析和相关分析的方法研究操作员在功能空间上的特性。我们的调查人员在每个特殊点进行了研究。内容如下:SATO研究了汉克尔(Hankel)某些操作员对正数的概括与雅各比正交系统的运算符(0,\ pi)上的运算符之间的关系。 Okeasu调查了功能空间上的异构体的结构,并通过收缩对它们的Korovkin型线性近似。此外,他调查了运营商元组的最大部分,在希尔伯特空间中,指示的操作员不平等所持有的最大部分。莫里(Mori)研究了复杂空间中代数非排定的杂物映射f的构建问题,以c^m的c^m c^n(c)中的任何给定的高表情D(c)中的任何给定的超表面d,f在p^n(c)中,f具有D. mizuhra的规定不足值,d。mizuhra均表明了h^1-frimanials的弱点和较弱的均值。同样在应用此结果时,我们观察到了Riesz电位与局部积分函数之间的换向器的必要性,该函数要限制在Morrey空间上。 Nakada研究了Riemann Sphere上朱莉娅(Julia)合理函数集的一些几何特性。特别是,它关注的是欧几里得运动的群体,这些动议使朱莉娅设定不变。川村讨论了有关与混乱图在测量空间上与混沌图相关的概率密度函数行为的理论的概括。他认为的空间是Al和AM空间,他概括了概率密度函数的收敛理论。 Sekigawa通过使用M \“ Obius Transformation的Clifford Matrix表示,扭转作用在三维欧几里得空间上的转化示例。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Komori, T.Mizuhara: "Notes on Commutators and Morrey spaces"Hokkaido Math.J.. VOl.32. 345-353 (2003)
Y.Komori,T.Mizuhara:“关于换向器和莫雷空间的注释”Hokkaido Math.J.. VOl.32。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Sato: "Lorentz multipliers for Hankel transforms"Science mathematicae Japonicae. Vol.59,No.3(to appear).
E.Sato:“汉克尔变换的洛伦兹乘子”日本数学科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Okayasu, T.Hachiro: "Some theorems of Korovkin type"Studia Math.. 155(2). 131-143 (2003)
T.Okayasu、T.Hachiro:“Korovkin 型的一些定理”Studia Math.. 155(2)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Okayasu: "Some theorems of Korovkin type"Studia Math.. 155. 131-143 (2003)
T.Okayasu:《Korovkin 型的一些定理》Studia Math.. 155. 131-143 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.komori: "Notes on commutators and Morrey spaces"Hokkaido Math.J.. 32. 345-353 (2003)
Y.komori:“关于交换子和莫雷空间的注释”Hokkaido Math.J.. 32. 345-353 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 26 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往

SATO Eiji其他文献

A STUDY ON STATIC MECHANICAL PROPERTIES OF VERTICAL SEISMIC ISOLATION SYSTEM WITH PARALLEL LINK MECHANISM
并联机构垂直隔震系统静态力学性能研究
地点別の地盤増幅特性を考慮した貯水槽被害の危険性評価
考虑每个位置的地面放大特性的水箱损坏风险评估
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TOMIZAWA Tetsuya;MATSUMOTO Itsuki;OGAWA Koya;YAMADA Manabu;SATO Eiji;FUKUI Hirohisa;亀山拓希,佐藤尚次,小野泰介,平野廣和
    TOMIZAWA Tetsuya;MATSUMOTO Itsuki;OGAWA Koya;YAMADA Manabu;SATO Eiji;FUKUI Hirohisa;亀山拓希,佐藤尚次,小野泰介,平野廣和
  • 通讯作者:
    亀山拓希,佐藤尚次,小野泰介,平野廣和
    亀山拓希,佐藤尚次,小野泰介,平野廣和
共 2 条
  • 1
前往

SATO Eiji的其他基金

Elucidation of the effects of vertical earthquake motion on structures, etc. and advancement of vertical seismic isolation mechanism to reduce the effects
阐明垂直地震运动对结构等的影响,并改进垂直隔震机制以减少影响
  • 批准号:
    18K04339
    18K04339
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Search for cancer drug candidate and its application under a new idea
新思路下寻找抗癌候选药物及其应用
  • 批准号:
    25670072
    25670072
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
    Grant-in-Aid for Challenging Exploratory Research
The Reconstruction of mathematics education in Japanese elementary schools, 1910-1950
日本小学数学教育的重建,1910-1950
  • 批准号:
    22530833
    22530833
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

矿井可控源电磁法三维数值模拟
  • 批准号:
    41304116
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hankel Transform, Langlands Functoriality and Functional Equation of Automorphic L-Functions
自同构 L 函数的 Hankel 变换、Langlands 函性和泛函方程
  • 批准号:
    1702380
    1702380
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Pinwheel Diffraction and the Hankel Transform
风车衍射和汉克尔变换
  • 批准号:
    480005-2015
    480005-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
    University Undergraduate Student Research Awards
HARMONIC ANALYSIS IN THE OPERATORS OF THE FUNCTION SPACES RELATED TO THE ORTHOGONAL SYSTEMS
正交系统相关函数空间算子的调和分析
  • 批准号:
    18540157
    18540157
  • 财政年份:
    2006
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
A study of harmonic analysis for orthogonal expansions
正交展开的调和分析研究
  • 批准号:
    17540155
    17540155
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis for Orthogonal Expansions
正交展开式的调和分析
  • 批准号:
    15540161
    15540161
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)