Research of topological properties of metric spaces and dimensions

度量空间和维数的拓扑性质研究

基本信息

项目摘要

This research project is the investigations of topological properties around metric spaces, and dimensions related to metric spaces. The main objects of the research are the following :(A)Topological properties or structures of quotient spaces of metric spaces, and their product spaces(B)Metric spaces and dimensions(C)Compactifications in metric spaces, and their dimensions(D)Tangent sphere bundles, hyper surfaces in Riemannian manifold, and their dimensionsThe research on (A);(B);(C); and (D) has been done by Y.Tanaka mainly ; T.Goto ; T.Kimura and K.Morishita ; and M.Sekizawa, respectivelyConcerning (A), Y.Tanaka considered the following classic questions (1) & (2), and a question (3)(1)Characterize some topological spaces by means of certain nice quotient spaces of metric spaces(2)For k-spaces X, Y, what is a necessary and sufficient conditions for the product space X x Y to be a k-space?(3)For a space X having a certain k-network, or having a weak topology with respect to certain covering, investigate nice topological structures of the space XFor the above questions, Y.Tanaka obtained some nice answers or results in his (joint) papers in famous international journals, Topology and its Applications, Houston J.Math., or Topology Proceedings, and so on.Concerning (B)-(D), some nice results also obtained by the investigators in their (joint) papers in Topology and its Appl., Fund Math., or other international journals, etcThe details for these, containing related papers and science reports, etc., are given in our Research-Report (under this grant-in-aid for scientific research (14540066)), 2005. March (pp.1-340).
该研究项目是对度量空间周围拓扑特性的研究,以及与度量空间有关的尺寸。该研究的主要对象是:(a)度量空间的商及其产品空间的拓扑特性或结构(b)度量空间和尺寸(c)压缩度(c)压缩及其尺寸(d)切线球形的尺寸(d)切线,riemannian歧管中的超表面,以及他们的二元研究(b); (D)主要由Y.Tanaka完成; T.Goto; T.Kimura和K.Morishita; and M.Sekizawa, respectivelyConcerning (A), Y.Tanaka considered the following classic questions (1) & (2), and a question (3)(1)Characterize some topological spaces by means of certain nice quotient spaces of metric spaces(2)For k-spaces X, Y, what is a necessary and sufficient conditions for the product space X x Y to be a k-space?(3)For a space X having a certain k-network, or having a weak关于某些覆盖的拓扑,调查上述问题的良好拓扑结构,Y.Tanaka在著名的国际期刊,拓扑,拓扑及其应用,休斯顿J.Math。或拓扑程序或拓扑程序中获得了一些不错的答案或结果。期刊等,其中包含相关论文和科学报告等的详细信息,请在我们的研究报告中(根据科学研究的这项拨款(14540066)),2005年。3月(第1-340页)。

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Closure-preserving sum theorems
保闭和定理
Y.Tanaka, T.Shinoda: "Orderability of compactfications"Questions and Answers in General Topology. (to appear). (2003)
Y.Tanaka、T.Shinoda:一般拓扑中的“紧凑化的可排序性”问答。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Topological groups with a certain point-countable cover
  • DOI:
    10.1016/s0166-8641(01)00066-9
  • 发表时间:
    2002-04
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Chuan Liu;M. Sakai;Yoshio Tanaka
  • 通讯作者:
    Chuan Liu;M. Sakai;Yoshio Tanaka
Quotient spaces and decompositions
商空间和分解
T.Kimura, C.Komada: "Spaces having a compactification which is a C-space"Topology and its Applications. (to appear). (2004)
T.Kimura、C.Komada:“具有紧凑化的空间,即 C 空间”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 43 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往

TANAKA Yoshio的其他基金

Mechanisms which underlie the immediate inhibitory effects by n-3 polyunsaturated fatty acids of coronary artery contraction
n-3 多不饱和脂肪酸对冠状动脉收缩的直接抑制作用的机制
  • 批准号:
    20K11519
    20K11519
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Studies on general-purpose optical tweezers system with different optical configurations for high performance non-contact 3D micromanipulation
不同光学配置的通用光镊系统用于高性能非接触3D显微操作的研究
  • 批准号:
    15K05921
    15K05921
  • 财政年份:
    2015
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Effect of platelet rich plasma and bFGF in in-vivo tissue engineered vascularized soft tissue flap
富血小板血浆和bFGF在体内组织工程血管化软组织瓣中的作用
  • 批准号:
    25462794
    25462794
  • 财政年份:
    2013
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Studies on 3D micro manipulation based on the spatial-temporal control of laser trap potential
基于激光陷阱势时空控制的3D微操控研究
  • 批准号:
    24560318
    24560318
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Unexpected pharmacological effects of n-3 polyunsaturated fatty acids (PUFAs): A new mechanism by which n-3 PUFAs produce blood vessel relaxation
n-3 多不饱和脂肪酸 (PUFA) 的意外药理作用:n-3 PUFA 产生血管松弛的新机制
  • 批准号:
    23590116
    23590116
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Experimental study of vascularized flap preparation in a tissue engineering chamber
组织工程室内血管化皮瓣制备的实验研究
  • 批准号:
    21592289
    21592289
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Atypical beta-adrenoceptor in vascular smooth muscle : studies on the sensitivity to bupranolol and the effects of sympathetic nerve denervation
血管平滑肌中的非典型β-肾上腺素能受体:丁丙洛尔敏感性研究和交感神经去神经效应的研究
  • 批准号:
    20590092
    20590092
  • 财政年份:
    2008
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Non-contact micro manipuIation based on the dynamical control of laser trap fields
基于激光陷阱场动态控制的非接触式微操作
  • 批准号:
    20560252
    20560252
  • 财政年份:
    2008
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Studies on the finictional coupling between β3-adtenoceptor and MaxiK channel in urinary bladder smooth muscle
膀胱平滑肌β3-肌腱受体与MaxiK通道功能耦合的研究
  • 批准号:
    18590157
    18590157
  • 财政年份:
    2006
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Physiological roles of MaxiK channel in the regulation of smooth muscle mechanical activity and the new insights into the molecular mechanisms responsible for MaxiK channel-mediated responses
MaxiK 通道在平滑肌机械活动调节中的生理作用以及对 MaxiK 通道介导反应分子机制的新见解
  • 批准号:
    14572165
    14572165
  • 财政年份:
    2002
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

结合空间转录组分析探究FAM20C在H3K27M突变型弥漫中线胶质瘤中的机制及临床价值
  • 批准号:
    82302627
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
omega-k空间一维连续域束缚态模式及其非线性光学应用
  • 批准号:
    12274269
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
Orlicz-Bochner空间K凸性与K光滑性的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于连续采集螺旋k空间核磁数据的多对比心脏核磁成像快速运动校正和重建算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
omega-k空间一维连续域束缚态模式及其非线性光学应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: K-stability and moduli spaces of higher dimensional varieties
职业:K-稳定性和高维簇的模空间
  • 批准号:
    2237139
    2237139
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Continuing Grant
    Continuing Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Continuing Grant
    Continuing Grant
K-Stability, Moduli Spaces, and Singularities
K-稳定性、模空间和奇点
  • 批准号:
    2148266
    2148266
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Continuing Grant
    Continuing Grant
K-Stability, Moduli Spaces, and Singularities
K-稳定性、模空间和奇点
  • 批准号:
    2001317
    2001317
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Boundedness of Fano varieties
Fano 簇的有界性
  • 批准号:
    16K17558
    16K17558
  • 财政年份:
    2016
  • 资助金额:
    $ 1.98万
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)