Microscopic Buckling Analysis of Cellular Solids Based on a Homogenization Theory of Finite Deformation

基于有限变形均匀化理论的多孔固体微观屈曲分析

基本信息

  • 批准号:
    13650084
  • 负责人:
  • 金额:
    $ 2.69万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

The microscopic symmetric bifurcation buckling of cellular solids subjected to macroscopically uniform compression was studied. To begin with, describing the principle of virtual work for infinite periodic materials in the updated Lagrangian form, we built a homogenization theory of finite deformation, which satisfies the principle of material objectivity. Then, we stated a postulate that at the onset of microscopic symmetric bifurcation, microscopic velocity becomes spontaneous, yet changing the sign of such spontaneous velocity has no influence on the variation in macroscopic states. By applying the postulate to the homogenization theory, we derived the conditions to be satisfied at the onset of microscopic symmetric bifurcation. The homogenization theory and buckling conditions established were employed to analyze the in-plane biaxial buckling of an elastic hexagonal honeycomb. We thus found the following : Simple, double and triple bifurcations can take place, if the largest compressive load is transmitted in one, two and three directions of cell walls, respectively. At the double and triple bifurcation points, uniaxial buckling modes develop simultaneously in the two and three directions of cell walls and are linearly combined to generate a biaxial mode, Mode II, reported by Gibson and Ashby (1997) and a flower-like mode, Mode III, observed by Papka and Kyriakides (1999a). In other words, these biaxial modes result from the multiplicity of bifurcation, so that they have very complex cell-patterns in comparison with the uniaxial buckling mode, Mode I, occurring at the simple bifurcation points. Moreover, we showed that Modes II and III, as well as Mode I, are classified as microscopic symmetric bifurcation in spite of their very complex cell-patterns, since they are not macroscopically influenced by changing the sign of spontaneous perturbed velocity as described in the postulate.
研究了宏观均匀压缩下多孔固体的微观对称分叉屈曲。首先,以更新的拉格朗日形式描述无限周期材料的虚功原理,建立了满足材料客观性原理的有限变形均质化理论。然后,我们提出了一个假设,即在微观对称分岔开始时,微观速度变得自发,但改变这种自发速度的符号对宏观状态的变化没有影响。通过将该假设应用于均质化理论,我们推导了微观对称分岔开始时需要满足的条件。利用所建立的均质化理论和屈曲条件,对弹性六边形蜂窝体的面内双轴屈曲进行了分析。因此,我们发现:如果最大的压缩载荷分别沿细胞壁的一个、两个和三个方向传递,则可能会发生简单分叉、双重分叉和三重分叉。在双分叉点和三分叉点,单轴屈曲模式在细胞壁的两个和三个方向上同时发展,并线性组合生成双轴模式,模式 II,由 Gibson 和 Ashby (1997) 报道,以及花状模式,模式 III,由 Papka 和 Kyriakides (1999a) 观察到。换句话说,这些双轴模式是由多重分叉产生的,因此与发生在简单分叉点的单轴屈曲模式(模式 I)相比,它们具有非常复杂的单元模式。此外,我们表明,尽管模式 II 和 III 以及模式 I 具有非常复杂的单元模式,但它们仍被归类为微观对称分岔,因为它们在宏观上不受改变自发扰动速度符号的影响,如假定。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
大野 信忠: "均質化理論に基づく周期材料の微視的分岐条件"計算工学講演会論文集. 7. 503-504 (2002)
Nobutada Ohno:“基于均质化理论的周期性材料的微观分岔条件”计算工程会议论文集 7. 503-504 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.Okumura: "Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression"International Journal of Solids and Structures. 39. 3487-3503 (2002)
D.Okumura:“面内双轴压缩弹性蜂窝体的后屈曲分析”国际固体与结构杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.Okumura: "Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression"International Journal of Solids and Structures. 39-13/14. 3487-3503 (2002)
D.Okumura:“面内双轴压缩弹性蜂窝体的后屈曲分析”国际固体与结构杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
大野 信忠: "セル状材料の微視的分岐解析における進展"日本機械学会論文集(A編). 68. 1498-1504 (2002)
Nobutada Ohno:“细胞材料微观分叉分析的进展”日本机械工程师学会会刊(ed.A)68。1498-1504(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Ohno, D.Okumura, and H.Noguchi: "Microscopic Bifurcation Condition of Periodic Materials Based a Homogenization Theory"Proceeding of the Conference on Computational Engineering and Science. 7-2. 503-504 (2002)
N.Ohno、D.Okumura 和 H.Noguchi:“基于均质化理论的周期性材料的微观分岔条件”计算工程与科学会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Nobutada其他文献

OHNO Nobutada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Nobutada', 18)}}的其他基金

Homogenized inelastic constitutive equation of open-porous bodies: theoretical developments and applications
开孔体均匀非弹性本构方程:理论发展与应用
  • 批准号:
    24360045
  • 财政年份:
    2012
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
  • 批准号:
    19360048
  • 财政年份:
    2007
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Large-scale Multiscale Analysis for Microscopic Buckling and Macroscopic Instability of Periodic Cellular Solids Based on a Homogenization Theory
基于均质化理论的周期性多孔固体微观屈曲和宏观不稳定性的大规模多尺度分析
  • 批准号:
    15360051
  • 财政年份:
    2003
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Laser-Raman Measurement and Analytical Evaluation of Matrix Creep Induced Stress Relaxation in Broken Fibers
断裂纤维中基体蠕变引起的应力松弛的激光拉曼测量和分析评估
  • 批准号:
    11650086
  • 财政年份:
    1999
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogenization Analysis and Experimental Verification for Creep of Unidirectional Fiber Reinforced Composites
单向纤维增强复合材料蠕变均匀化分析及实验验证
  • 批准号:
    09450046
  • 财政年份:
    1997
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

考虑微纳尺度变形特征和有限变形的增量型粗糙面接触模型
  • 批准号:
    12372100
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
磁流变弹性体在有限变形下的力磁耦合本构建模研究
  • 批准号:
    12372068
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于增量理论和有限应变板壳模型的液晶弹性体力/热/光致变形研究
  • 批准号:
    12372072
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
有限变形弹塑性板的冲击动力响应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
聚氧化乙烯基固态电解质的弹黏塑性有限变形特性和应变依赖的离子导电行为与性能优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Construction of creative design method of new functional structures using crack initiation/growth and finite deformation
基于裂纹萌生/扩展和有限变形的新型功能结构创意设计方法的构建
  • 批准号:
    22K18755
  • 财政年份:
    2022
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Continuum Dislocation Dynamics Modeling of Mesoscale Crystal Plasticity at Finite Deformation
有限变形下介观晶体塑性的连续体位错动力学建模
  • 批准号:
    1663311
  • 财政年份:
    2017
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Standard Grant
Development of a three-phase coupled finite deformation analysis method based on effective saturation degree and validation by unsaturated triaxial test
基于有效饱和度的三相耦合有限变形分析方法的开发及非饱和三轴试验验证
  • 批准号:
    17K14720
  • 财政年份:
    2017
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of Elasto-Plastic Spectral Stochastic Finite Element Method based on Finite Deformation Theory
基于有限变形理论的弹塑性谱随机有限元方法的发展
  • 批准号:
    16K14300
  • 财政年份:
    2016
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Establishment of large deformation analysis techniques for nearly incompressible materials with complex shapes using smoothed finite element methods
利用平滑有限元法建立复杂形状近不可压缩材料的大变形分析技术
  • 批准号:
    16K17978
  • 财政年份:
    2016
  • 资助金额:
    $ 2.69万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了