The Analysis of Computational Complexity of Discrete Problems

离散问题的计算复杂性分析

基本信息

项目摘要

In this research project, we mainly investigate the computational complexity of discrete problems. In particular, we dealt with graph Isomorphism problem and the problem of counting self avoiding walks in graphs. At this point, exploring the. precise complexity of the problems has remained to be important open questions in computational complexity theory while many researches were done so far. We currently believe that investigating their computational complexity may give us a new insight on the structure of computations. In this research project, we obtained several results mentioned as follows. Related to the graph isomorphism problem, we first showed that the problem of counting graph isomorphisms among partial k-trees was computable in polynomial time with developing a dynamic programming algorithm. In this algorithm, we had to compute the permanent of bipartite graphs, which is the number of perfect matching in bipartite graphs. In usual, such a computation has appeared to be hard. But, in our case, we found that bipartite graphs concerned had a strong symmetry, and then we succeeded to design an efficient algorithm for computing the permanent. We further showed that the graph isomorphism problem on the class of chordal bipartite graphs and on the class of strongly chordal graphs remained to be GI -complete.. These results refine the previous knowledge on the complexity. of the problem. We also showed that the problems of counting self-avoiding walks both in two-dimensional grid graphs and in hypercube graphs were complete for #P. This is a first result concerned on the complexity of the problem. We further showed that the problem was #EXP-complete in case that an input graph was given in a succinct representation form. We further designed a linear-time algorithm for 7-coloring 1 -planar graphs, and we study a possibility of developing software systems with using graph grammar theory.
在该研究项目中,我们主要研究离散问题的计算复杂性。特别是,我们处理图形同构问题以及计算自我避免在图形中行走的问题。在这一点上,探索。这些问题的精确复杂性仍然是计算复杂性理论中的重要开放问题,而到目前为止进行了许多研究。我们目前认为,调查其计算复杂性可能会使我们对计算结构有了新的见解。在该研究项目中,我们获得了如下提到的几个结果。与图形同构问题有关,我们首先表明,在多项式时间内,可以计算部分K-Trees之间的图形同构问题,并开发动态编程算法。在此算法中,我们必须计算两分图的永久性,这是双方图中完美匹配的数量。通常,这样的计算似乎很难。但是,在我们的情况下,我们发现相关的两分图具有很强的对称性,然后我们成功地设计了一种用于计算永久性的有效算法。我们进一步表明,在弦弦两分的类别和强烈的和弦图等级上的图形同构问题仍然是gi -complete。这些结果完善了先前关于复杂性的知识。问题。我们还表明,在二维网格图中计算自我避免步行的问题,以及在超立方体图中的#P完整问题。这是问题的复杂性的第一个结果。我们进一步表明,如果以简洁的表示形式给出了输入图,则问题是#Exp-Complete。我们进一步为7色1平面图设计了一种线性时间算法,并研究了使用图形语法理论开发软件系统的可能性。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Liskiewicz, M.Ogihara, S.Toda: "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes"Theoretical Computer Science. Vol.304 No.1-3. 129-156 (2003)
M.Liskiewicz、M.Ogihara、S.Toda:“计算二维网格和超立方体子图中自回避游走的复杂性”理论计算机科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
戸田誠之助: "グラフ同型性判定問題の計算量"電子情報通信学会論文誌 D-I. D-I,J85-D-I. 100-115 (2002)
Seinosuke Toda:“图同构确定问题的计算量”电子、信息和通信工程师学会会刊 D-I,J85-D-I 100-115(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Toda: "Computational Complexity of Graph Isomorphism Problem"IEICE Japanese Transactions on Information and Systems. Vol.J85-D-I, No2. 100-115 (2002)
S.Toda:“图同构问题的计算复杂性”IEICE 日本信息与系统交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
戸田誠之助: "グラフ同型性判定問題"冨山房. 129 (2001)
Seinosuke Toda:“图同构判定问题”Tomiyamabo。129(2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 5 条
  • 1
前往

TODA Seinosuke的其他基金

Analyzing Computational Complexity of Graph-Theoretic Problems with Restrictions on Width Parameters
分析具有宽度参数限制的图论问题的计算复杂性
  • 批准号:
    10205224
    10205224
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Space complexity of undirected graph accessibility problem
无向图可达性问题的空间复杂度
  • 批准号:
    09640296
    09640296
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

图机器学习的理论、模型与算法设计
  • 批准号:
    62376007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向网络群体行为检测的图数据流概要和属性图社区发现理论研究
  • 批准号:
    62372106
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
箭图的FP理论及相关幺半三角范畴的研究
  • 批准号:
    12301053
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于图的高维线性回归问题的统计理论与牛顿型算法
  • 批准号:
    12301420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多源动态扩散驱动的结构化图学习理论与方法
  • 批准号:
    62376146
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Standard Grant
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Theory for Dynamic Graph Algorithms
职业:动态图算法理论
  • 批准号:
    2238138
    2238138
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Continuing Grant
    Continuing Grant