Development of Low-Invasive Estimation System of Maximum Ventricular Elastance E_<max> Based on Parameter Optimization Method
基于参数优化方法的低创最大心室弹性E_<max>估计系统的研制
基本信息
- 批准号:12680822
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The maximum ventricular elastance (E_<max>) is a good quantitative index for evaluating cardiac pump function. If E_<max> can be obtained low-invasively, it will strongly contribute to test and diagnosis of ischemic heart diseases and so on. However, the clinical application of E_<max> has not extensively progressed because the conventional methods for obtaining E_<max> need high invasive measurements. The purpose of this research was to develop a clinical method for estimating E_<max> low-invasively without any cardiac load on the basis of the parameter optimization method (POM) which has already proposed by the authors.The POM needs left ventricular pressure (LVP) and aortic flow (AoF).First, the system we have developed can estimate LVP on the basis of two ARX (autoregressive exogeneous) models : the system model from radial arterial pressure (RdP) to aortic pressure (AoP) and the system model from AoP to LVP, respectively. In a cardiac catheterization test, these ARX models can be identified by using LVP, AoP and RdP. LVP and AoP are invasive measurements but RdP is measured noninvasively by a tonometric pressure sensor. Once these models are identified, it is guessed that LVP can be estimated fully noninvasively by using RdP even after the previous cardiac catheterization test.Secondly, the developed system can estimate AoF by automatically extracting the contour of Doppler echocardiography during the ejection period.Finally, the total system has been completed in a personal computer unit so as to estimate E_<max> on the basis of the POM using the off-line data of RdP and the Doppler image of aortic flow rate. However, an input module has to be added to the system to apply the system to real clinical use.
最大心室弹性(E_<max>)是评估心脏泵功能的良好定量指标。如果能够低侵入性地获得E_<max>,将极大地有助于缺血性心脏病等的检测和诊断。然而,由于传统获取E_<max>的方法需要高侵入性测量,E_<max>的临床应用尚未得到广泛进展。本研究的目的是在作者已经提出的参数优化方法(POM)的基础上,开发一种低创无任何心脏负荷估计E_<max>的临床方法。POM需要左心室压力( LVP)和主动脉流量(AoF)。首先,我们开发的系统可以基于两个ARX(自回归外生)模型来估计LVP:从径向动脉压(RdP)到主动脉压 (AoP) 以及从 AoP 到 LVP 的系统模型。在心导管检查中,可以使用 LVP、AoP 和 RdP 来识别这些 ARX 模型。 LVP 和 AoP 是有创测量,但 RdP 是通过眼压压力传感器无创测量的。一旦确定了这些模型,猜测即使在之前的心导管检查之后,也可以使用 RdP 完全无创地估计 LVP。其次,开发的系统可以通过自动提取射血期间多普勒超声心动图的轮廓来估计 AoF。最后,整个系统已在个人计算机单元中完成,以便使用 RdP 的离线数据和主动脉多普勒图像在 POM 的基础上估计 E_<max>流量。然而,必须在系统中添加输入模块才能将该系统应用于实际临床使用。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Makoto Yoshizawa: "Sensor-less ostimation of pressure head and flow of a cantinuous flow artificial heart"Journal of Congestive Heart Failure and circulatory support. 1. 259-262 (2001)
Makoto Yoshizawa:“连续流动人工心脏的压头和流量的无传感器估计”充血性心力衰竭和循环支持杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Xian-Zheng Wang: "Automatic detection and classification of abnormalities for artificial hearts using a hierarchical self-organizing map"Artificial Organs. 25 (2). 150-153 (2001)
王贤正:“使用分层自组织图自动检测和分类人工心脏异常”人工器官。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Yoshizawa: "Information Technologies in Medicine Vol.I"John Wiley & Sons. 238 (2001)
吉泽诚:《医学信息技术第一卷》约翰·威利
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Yambe: "Pathopysiological aspect of an implantable ventricular assist device with short stroke and high frequency"J. of Congestive Heart Failure and Circulatory Support. 1・4. 299-303 (2001)
T.Yambe:“短行程和高频率的植入式心室辅助装置的病理生理学方面”,《充血性心力衰竭和循环支持》1·4(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tomoyuki Yanbe: "Nonlinear Biomedical Signal Processing Vol.II"IEEE Press. 340 (2001)
Tomoyuki Yanbe:“非线性生物医学信号处理卷 II”IEEE 出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHIZAWA Makoto其他文献
Multibeam-echosounder Accuracy Verification Experimental Method and Initial Results
多波束回声测深仪精度验证实验方法及初步结果
- DOI:
10.3135/jmasj.49.127 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
SUMIYOSHI Masanao;NAGASAWA Ryosuke;OGAWA Haruka;YOSHIZAWA Makoto;AKIYAMA Yuhei;NAGANO Katsuyuki;HASHIMOTO Takafumi;HORINOUCHI Ryoichi;HORIUCHI Koji;SAITO Koji;KAWAKAMI Tomoki;YOSHIDA Zengo;YOKOTA Yusuke - 通讯作者:
YOKOTA Yusuke
保育者志望学生を対象とした応用行動分析に基づく援助スキル訓練の試み ーティーチャー ・ トレーニングによる子どもの行動とその対応に関する理解の変化ー
对希望成为保育员的学生进行基于应用行为分析的帮助技能的尝试 -通过教师培训改变对儿童行为和反应的理解 -
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
SUZUKI Shintaro;ZHANG Xiaoyong;HOMMA Noriyasu;ICHIJI Kei;TAKANE Yumi;YANAGAKI Satoru;KAWASUMI Yusuke;ISHIBASHI Tadashi;YOSHIZAWA Makoto;松田侑子,濱田祥子 - 通讯作者:
松田侑子,濱田祥子
A Deep Learning-based Computer-aided Diagnosis System for Mammographic Lesion Detection
基于深度学习的乳腺X线病变检测计算机辅助诊断系统
- DOI:
10.9746/sicetr.54.659 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
SUZUKI Shintaro;ZHANG Xiaoyong;HOMMA Noriyasu;ICHIJI Kei;TAKANE Yumi;YANAGAKI Satoru;KAWASUMI Yusuke;ISHIBASHI Tadashi;YOSHIZAWA Makoto - 通讯作者:
YOSHIZAWA Makoto
Analysis on Literature and Research Reports about Science Education with Locality in Japan
日本本土科学教育文献及研究报告分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
SUZUKI Shintaro;ZHANG Xiaoyong;HOMMA Noriyasu;ICHIJI Kei;TAKANE Yumi;YANAGAKI Satoru;KAWASUMI Yusuke;ISHIBASHI Tadashi;YOSHIZAWA Makoto;松田侑子,濱田祥子;佐藤充孝,古原忠;Satoko BABA (馬場智子) - 通讯作者:
Satoko BABA (馬場智子)
YOSHIZAWA Makoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHIZAWA Makoto', 18)}}的其他基金
Verification of role-sharing hypothesis of circulatory control and its application to health monitoring using sensors for video games
验证循环控制的角色共享假设及其在使用视频游戏传感器的健康监测中的应用
- 批准号:
24650415 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Clinical evaluation of a noninvasive estimation system for cardiac function
无创心功能评估系统的临床评价
- 批准号:
18300167 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Noninvasive Estimation system of Maximum Ventricular Elastance Emax for Clinical Application
临床应用最大心室弹性Emax无创估计系统的开发
- 批准号:
14580807 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Low-Invasive Estimation System of Maximum Ventricular Elastance Emax Under Assisted Circulation
辅助循环下最大心室弹性Emax低创估算系统的研制
- 批准号:
09680841 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of Noninvasive Estimation system of Maximum Ventricular Elastance Emax for Clinical Application
临床应用最大心室弹性Emax无创估计系统的开发
- 批准号:
14580807 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Low-Invasive Estimation System of Maximum Ventricular Elastance Emax Under Assisted Circulation
辅助循环下最大心室弹性Emax低创估算系统的研制
- 批准号:
09680841 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)