Study on Pattern Inference from Positive Data

实证数据模式推断研究

基本信息

  • 批准号:
    12680391
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

The aim of this research is in investigating realizability of machine learning, by studying inductive inferece as a theoretical model of learning from examples. In general, examples using in learning are categorized in positive ones and negative ones. In language (or grammar) learning, positive examples are corresponding to (grammatically) correct sentences. Data obtained from experiments can be considered as positive examples of a certain property, when they are concernd with the property. In this research, we have considered theoretical limits of inductive learning based on positive examples and investigated efficient learning algorithms from the viewpoint of practical applications.A pattern is a string consisting of constant symbols and variables. The language of a pattern is the set of constant strings obtained by. substituting nonempty constant strings for variables in the pattern. For any fixed k, the class of unions of at most k pattern languages is already shown to be inferable from positive data.We apply a learning algorithm for pattern languages to discover a motif from amino-acid sequences. From only positive examples with the help of an alphabet indexing, the algorithm successfully finds sets of patterns, that can be considered as motifs.We have also studied speed-up of language acceptors for elementary formal systems, where we employ fast string pattern matching machines. Finally, we propose a possible approach to extending leaning algorithms for multiple patterns.
这项研究的目的是通过将归纳推理作为从示例中学习的理论模型来研究机器学习的可靠性。通常,在学习中使用的示例分类为积极的示例和负面的示例。在语言(或语法)学习中,积极的例子与(语法上)正确的句子相对应。当从实验中获得的数据是某个特性的积极示例,当它们关注该属性时。在这项研究中,我们考虑了基于积极示例的归纳学习的理论限制,并从实际应用的角度研究了有效的学习算法。一种模式是由恒定的符号和变量组成的字符串。模式的语言是由恒定字符串获得的集合。将非空的恒定字符串替换为模式中的变量。对于任何固定的K,大多数K模式语言的工会类别都可以从正数据中推断出来。我们对模式语言进行学习算法,以从氨基酸序列中发现图案。从仅借助字母索引的积极示例,该算法成功地找到了一组模式,可以将其视为主题。我们还研究了基础正式系统的语言受体的加快,我们采用了快速的字符串模式匹配机器。最后,我们提出了一种扩展多种模式倾斜算法的可能方法。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takeshi Shinohara, Hiroki Ishizaka: "On Dimension Reduction Mappings for Approximate Retrieval of Multi-dimensional Data"Progress Discovery Science, Final Report of the Japanese Discovery Science Project,(Lecture Notes in Artificial intelligence Vol.2281)
Takeshi Shinohara、Hiroki Ishizaka:“On Dimension Reduction Mappings for Approxival Retrieval of Multi-Dimensional Data”Progress Discovery Science,日本发现科学项目最终报告,(人工智能讲座笔记第2281卷)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi Shinohara: "Speed-up of Aho-Corasick Pattern Matching Machines by Rearranging States"Proceedings of 8^<th> International Symposium on String Processing and Information Retrieval. 175-185 (2001)
Takeshi Shinohara:“通过重新排列状态加速 Aho-Corasick 模式匹配机”第 8 届国际字符串处理和信息检索研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shuichi Fukamachi: "Speed-Up of approximate string matching using lossy compression"Proceedings of the 10th European-Japanese Conference on Information Modeling and Knowledge bases. 262-263 (2000)
Shuichi Fukamachi:“使用有损压缩加速近似字符串匹配”第十届欧洲-日本信息建模和知识库会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi Shinohara: "On dimension reduction mappings for approximate retrieval of multi-dimensional data"Lecture Notes in Artificial Intelligence Vol.2281. 224-231 (2002)
Takeshi Shinohara:“关于多维数据近似检索的降维映射”人工智能讲义第2281卷。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yen Kaow Ng: "The Discovery of Consensus Patterns"火の国情報シンポジウム2004予稿集. 8 (2004)
Yen Kaow Ng:“共识模式的发现”火国信息研讨会论文集2004. 8 (2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHINOHARA Takeshi其他文献

SHINOHARA Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHINOHARA Takeshi', 18)}}的其他基金

Study on Contents Based Fast Similarity Search of High-Dimensional Multimedia Data and Its Application
基于内容的高维多媒体数据快速相似度搜索及其应用研究
  • 批准号:
    23500126
  • 财政年份:
    2011
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconstruction of Distributed Leadership Theory based on comparative studies on Educational Governance in Japan and America
基于日美教育治理比较研究的分布式领导理论重构
  • 批准号:
    22830031
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on Pattern Inference based on Positive Examples and its Application to Knowledge Discovery
基于正例的模式推理及其在知识发现中的应用研究
  • 批准号:
    19500125
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Inductive Learning Based on Positive Examples
基于实证的归纳学习研究
  • 批准号:
    09680372
  • 财政年份:
    1997
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Inductive Learning Based on Positive Examples
基于实证的归纳学习研究
  • 批准号:
    07680406
  • 财政年份:
    1995
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speedup of Text Database by Data Compression
通过数据压缩加速文本数据库
  • 批准号:
    07558159
  • 财政年份:
    1995
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于偏序邻域的多粒度图机器学习与决策
  • 批准号:
    62366008
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
  • 批准号:
    42377385
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习的大学生自杀风险识别研究
  • 批准号:
    32300917
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多机器人视觉感知的自主学习机制
  • 批准号:
    62373009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了