Computational Study on Recognition and Memory in the Asymmetric <symmetric Neural Networks

非对称<对称神经网络识别与记忆的计算研究

基本信息

  • 批准号:
    12680379
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Biological neural networks are different from artificial neural networks. There are functionally different neurons in the networks. In the field of neuro-physiology , neurons are classified into cells with several types of function by the experiments. We classify the biological neural network morphologically into two types of sub-networks. One is the symmetrical network, while the other is the asymmetrical network. We extended this asymmetrical network to the generalized asymmetrical network to clarify the characteristics of the asymmetrical networks. The generalized asymmetrical network extended to the parallel network with the odd nonlinear pathway of neurons and the even nonlinear pathway of neurons. The function of this generalized asymmetrical networks, is analyzed by Wiener analysis method. Then, the temporal correlations are important in the asymmetrical network. We derived this generalized network is reduced to the asymmetrical network, which consists of the parallel network with the linear pathway, which shows an odd nonlinearity, and with the nonlinear pathway, which shows the 2nd order nonlinearity. We clarified that the biological network is composed with two asymmetrical sub-networks, which realizes the spacial and temporal correlation as the stimulus information transmitted to the central neural network.
生物神经网络与人工神经网络不同。网络中存在功能不同的神经元。在神经生理学领域,神经元通过实验被分为多种功能的细胞。我们从形态上将生物神经网络分为两类子网络。一种是对称网络,另一种是非对称网络。我们将这种非对称网络扩展到广义非对称网络,以阐明非对称网络的特征。广义非对称网络扩展到神经元奇非线性路径和神经元偶非线性路径的并行网络。采用维纳分析方法对这种广义非对称网络的功能进行了分析。那么,时间相关性在非对称网络中很重要。我们推导出这个广义网络被简化为不对称网络,它由具有线性路径的并行网络组成,显示奇数非线性,以及具有非线性路径,显示二阶非线性。我们阐明了生物网络由两个不对称的子网络组成,当刺激信息传递到中枢神经网络时,实现了空间和时间的相关性。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Ishii, H.Nakamura,M.Ohta: "Correlation Functions in Nonlinear Neural Networks"Proc. Of the Seventh International Artificial Life & Robotics. 148-151 (2002)
N.Ishii、H.Nakamura、M.Ohta:“非线性神经网络中的相关函数”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Yamaguchi, Yamauchi, N.Ishii: "An Incremental Learning Method using Weighted Magnitude"Proc.2000 IEEE Conf.on Ind.Electronics C & I. (IECON). 1189-1194 (2000)
N.Yamaguchi、Yamauchi、N.Ishii:“使用加权幅度的增量学习方法”Proc.2000 IEEE Con​​f.on Ind.Electronics C
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Yamaguchi, Yamauchi, N.Ishii: "An Incremental Learning Method using Weighteal Magnitude"Proc. IEEE Conf. on Ind. Electronics C&I. (IECON). 1189-1194 (2000)
N.Yamaguchi、Yamauchi、N.Ishii:“使用权重幅度的增量学习方法”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Takeuchi, K.Yamauchi, N.Ishii: "Self-supervisees Leaning and Recognition by Integrating Int."Proc. IEEE Conf. on Ind. Electronics C&I. (IECON). 1195-1200 (2000)
H.Takeuchi、K.Yamauchi、N.Ishii:“通过整合智力来自我监督学习和识别。”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Yamauchi,S.Ito,N.Ishii: "Wake-Sleep Learning method for quick adaptation"Proc.International Conf.on Neural Inf.Process.. (ICONIP). 1-6 (2000)
K.Yamauchi、S.Ito、N.Ishii:“快速适应的唤醒睡眠学习方法”Proc.International Conf.on Neural Inf.Process.. (ICONIP)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Naohiro其他文献

ISHII Naohiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Naohiro', 18)}}的其他基金

Computational Study on the Cognition and Memory Based on the Nonlinear Analysis for the Asymmetric Neural Networks
基于非对称神经网络非线性分析的认知与记忆计算研究
  • 批准号:
    15K00351
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Studies on the Cognition and Memory Mechanisms of the Layered Neural Network with Asymmetric Structure
非对称结构分层神经网络认知记忆机制的计算研究
  • 批准号:
    21500225
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on Recognition and Memory Mechanism of Asymmetric and Symmetric Layered Neural Networks
非对称与对称分层神经网络识别与记忆机制的计算研究
  • 批准号:
    19500197
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Research on Cognition and Memory Mechanism in Neural Networks with Asymmetric and Symmetric Network Structures
非对称和对称网络结构神经网络认知记忆机制的计算研究
  • 批准号:
    17500154
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Research on Cognition and Memory Mechanism in Neural Networks with Symmetric and Asymmetric Network Structures
对称与非对称网络结构神经网络认知与记忆机制的计算研究
  • 批准号:
    15500134
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on the Structure and Learning in the Integrated Neural Networks for Different Sensors
不同传感器的集成神经网络结构和学习的计算研究
  • 批准号:
    09680365
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developmental Study on Measuring, Recording & Procession System of EEG during Working and Sleep
测量、记录的发展研究
  • 批准号:
    03555068
  • 财政年份:
    1991
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study of Neural Information Processing by Spacial-Temporal Computation of Electroencephalogram, Electrooculogram and Electromyogram
脑电图、眼电图、肌电图时空计算的神经信息处理研究
  • 批准号:
    01550328
  • 财政年份:
    1989
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development Studies of Measuring and Processing Systgem of EEG Activity during Orking and Sleeping
睡眠时脑电活动测量与处理系统的开发研究
  • 批准号:
    61850055
  • 财政年份:
    1986
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
Study of Information Processing in Neural Systems by Measuring EEG,EOG and EMG.
通过测量脑电图、眼电图和肌电图研究神经系统的信息处理。
  • 批准号:
    61550296
  • 财政年份:
    1986
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Mechanisms of left-right asymmetric visual network formation involving acquired factors and their physiological significance.
涉及后天因素的左右不对称视觉网络形成机制及其生理意义。
  • 批准号:
    20K22738
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Population Aging, End-of-Life Medical Cost and Health Insurance Coverage Scheme
人口老龄化、临终医疗费用和健康保险覆盖计划
  • 批准号:
    19K01670
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reaction-diffusion network with asymmetric connection, and its application to motion and disparity detection
非对称连接的反应扩散网络及其在运动和视差检测中的应用
  • 批准号:
    17K00341
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Inference over Asymmetric Network and Data Structures
CIF:小:非对称网络和数据结构的推理
  • 批准号:
    1524250
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Dynamics of the SHR-SCR Network Controlling Asymmetric Cell Division
SHR-SCR 网络控制不对称细胞分裂的动力学
  • 批准号:
    8527289
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了