Study of Non-Perturbative Dynamics of Superstring Theory through Supersymmetric Yang-Mills Theory
通过超对称杨-米尔斯理论研究超弦理论的非微扰动力学
基本信息
- 批准号:12640264
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main aim of the present research project has been to understand the non-perturbative properties of superstring theory and to give its basic formulation through the analysis of various aspects of supersymmetric Yang-Mills theory. We have obtained rather satisfactory results concerning the analysis of soliton solutions in non-commutative super Yang-Mills theory and its brane interpretation, though there still remains much to be clarified in other planned subjects. However, we have accomplished remarkable results in the analysis of tachyon condensation using String Field Theory, which is a subject not contained in the original plan. The following is a concrete description of our researches in the years 2000-2002:1) Analysis of monopole solution in non-commutative super Yang-Mills theory: We have presented, to second order in the non-commutativity parameter θ, the monopole solution to non-commutative super Yang-Mills theory, and given a brane interpretation to the solution.2) Analysis of tachyon condensation using string field theory: We have shown that the classical solution of string field theory representing the vacuum with tachyon condensation (tachyon vacuum) satisfies, besides the equation of motion, another important requirement of BRST invariance. We have also carried out an analysis of fluctuation around the solution to and obtained results which strongly support the expectation that there is no physical open string states around the tachyon vacuum.3) Study of Vacuum String Field Theory: We have carried out pioneering studies on the problem of whether Vacuum String Field Theory (VSFT), which is a candidate string field theory expanded around the tachyon vacuum, can be related to ordinary open string theory. We have constructed a classical solution representing the perturbative vacuum, analyzed the fluctuation spectra around the solution, and so on, and obtained results supporting the expectation.
本研究项目的主要目的是了解超边缘理论的非扰动特性,并通过分析超对称杨米尔斯理论的各个方面来赋予其基本公式。我们已经获得了关于在非共同的超级阳米尔斯理论及其布雷恩解释中对孤子解决方案分析的相当满意的结果,尽管在其他计划的主题中仍然有很多尚待阐明。但是,我们在使用字符串场理论的速度凝结分析中取得了显着的结果,这是原始计划中不包含的主题。以下是对我们在2000-2002年的研究的具体描述:1)在非交换性超级杨利米尔理论中分析单子解决方案的分析:我们已经在非交通性参数θ中介绍了二阶,单台词的单极解解决了非交换性超级Yang-mills segende的非交换性condertion condertion contrane contrane condertion contrane contrane condertion condertion conderation conderation conditation contrane condation conditation condation condation condation condation condation condation condation condation condation condation ofer.2)用速度凝结(Tachyon真空)代表真空的现场理论,除了运动方程外,还满足了BRST不变性的另一个重要要求。 We have also carried out an analysis of fluctuation around the solution to and obtained results which strongly support the expectation that there is no physical open string states around the tachyon vacuum.3) Study of Vacuum String Field Theory: We have carried out pioneering studies on the problem of whether Vacuum String Field Theory (VSFT), which is a candidate string field theory expanded around the tachyon vacuum, can be related to ordinary open string theory.我们已经构建了代表扰动真空的经典解决方案,分析了解决方案周围的波动光谱,依此类推,并获得了支持期望的结果。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Goto: "Noncommutative Monopole of the Second Order in θ"Physical Review D. 62. 085022 (2000)
S.Goto:“θ 二阶非交换单极子”物理评论 D. 62. 085022 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiyoruki Hata: "Test of the Absence of Kinetic Terms around the Tachyon Vacuum in Cubic String Field Theory"Journal of High Energy Physics. 0105. 045 (2001)
Hiyoruki Hata:“立方弦场理论中快子真空周围动力学项不存在的检验”高能物理杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Hata: "Reexamining Classical Solution and Tachyon Mode in Vacuum String Field Theory"Nuclear Physics B. 651. 3-25 (2003)
Hiroyuki Hata:“重新审视真空弦场论中的经典解和快子模式”核物理 B.651.3-25(2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Hata: "Exact Results on Twist Anomaly"Journal of High Energy Physics. 0202. 036 (2002)
Hiroyuki Hata:“扭曲异常的精确结果”高能物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Hata: "Open String States around Classical Solution in Vacuum String Field Theory"Journal of High Energy Physics. 0111. 038 (2001)
Hiroyuki Hata:“真空弦场理论中经典解的开弦态”高能物理杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 13 条
- 1
- 2
- 3
HATA Hiroyuki的其他基金
Comprehensive study on fundamental problems in string field theories
弦场论基本问题综合研究
- 批准号:2154026421540264
- 财政年份:2009
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Analysis of the non-perturbative structure of string theory on the basis of string field theory
基于弦场论的弦论非微扰结构分析
- 批准号:1554026815540268
- 财政年份:2003
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Duality in String Field Theory
弦场论中的对偶性
- 批准号:0964034609640346
- 财政年份:1997
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Analysis of the dynamics in gauge and quantum gravity theories using the pure-gauge model
使用纯规范模型分析规范和量子引力理论的动力学
- 批准号:0764039407640394
- 财政年份:1995
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
A Joint Research of Traditional and Alternative Dispute Resolution Systems in the South-western Pacific Countries
西南太平洋国家传统与替代性争议解决制度的联合研究
- 批准号:0104502201045022
- 财政年份:1989
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for international Scientific ResearchGrant-in-Aid for international Scientific Research
相似国自然基金
空间域和时间域共同调控下非均匀板材空间异质性磁流变弹性体软模成形机理与变形协调控制方法
- 批准号:51875123
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Banach Space Structures of Non-commutative L^p-spaces and Non-commutative Martingale Inequalities
非交换 L^p 空间和非交换鞅不等式的 Banach 空间结构
- 批准号:04567810456781
- 财政年份:2005
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Standard GrantStandard Grant
Infinitely generated objects
无限生成的对象
- 批准号:1654012516540125
- 财政年份:2004
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Non commutative harmonic analysis and operator space theory
非交换调和分析与算子空间理论
- 批准号:253312-2002253312-2002
- 财政年份:2003
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Postdoctoral FellowshipsPostdoctoral Fellowships
Non commutative harmonic analysis and operator space theory
非交换调和分析与算子空间理论
- 批准号:253312-2002253312-2002
- 财政年份:2002
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Postdoctoral FellowshipsPostdoctoral Fellowships
Banach space structures of L^p-spaces and non-commutative Hardy spaces
L^p 空间和非交换 Hardy 空间的 Banach 空间结构
- 批准号:00966960096696
- 财政年份:2001
- 资助金额:$ 1.66万$ 1.66万
- 项目类别:Continuing grantContinuing grant