Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains

时间类周期非圆柱域中解演化方程的行为研究

基本信息

  • 批准号:
    12640220
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

In this project we dealt with linear and nonlinear wave equations in noncylindrical domain periodic or quasiperiodic in time. We studied the qualitative behavior of solutions of the initial boundary value problems (IBVP) and the boundary value problems (BVP). Our results are as follows.(1) We considered BVP for 1-D nonlinear wave equations in time-periodic noncylindrical domains. If the nonlinear forcing term, the boundary functions and the boundary data are periodic in time with same period, BVP have time-periodic solutions. This problem had been regarded as one of the difficult problems.(2) We considered IBVP for 1-D linear wave equations in time-quasiperiodic noncylindrical domains. The nonhomogeneous terms of the equations and the boundary data are also time quasiperiodic. As we showed in the previous Research Project, the solutions are generally almost periodic in time, hence bounded in time. We studied this phenomena more deeply, and found that there exist solutions which are the … More superpositions of time-unbounded waves.(3) We considered IBVP for 3-D radially symmetric linear wave equations in time-quasiperiodic noncylindrical domains whose space-domains are surrounded by two balls. We showed that the solutions are generally almost periodic in time.(4) We considered BVP for 3-D radially symmetric nonlinear wave equations in time-periodic noncylindrical domains whose space-domains are balls. Under the similar assumptions to those of (1) BVP have time-periodic solutions. The results seem to be interesting.In order to solve the problems, we developed some useful method. This method consists of a transformation of BVP for wave equations to some functional equations and domain transformations that transform the noncylindrical domains to cylindrical domains. The former was established by M. Yamaguchi and the latter by M. Yamaguchi and H. Yoshida. This method is based on the Reduction Theorems by M. Herman and J. Yoccoz in periodic case and by M. Yamaguchi in quasiperiodic case. Less
在这个项目中,我们处理非圆柱域周期或准周期时间中的线性和非线性波动方程,我们研究了初始边值问题(IBVP)和边值问题(BVP)的解的定性行为,我们的结果如下。 (1) 我们考虑时间周期非圆柱域中的一维非线性波动方程的 BVP 如果非线性强迫项、边界函数和边界数据在时间上具有相同的周期, BVP具有时间周期解,这一问题一直被认为是难题之一。(2)考虑了时间准周期非圆柱域中的一维线性波动方程的IBVP,方程的非齐次项和边界数据为。正如我们在之前的研究项目中所示,解通常在时间上几乎是周期性的,因此我们更深入地研究了这种现象,并发现存在解。 …更多时间无界波的叠加。(3) 我们考虑了时间准周期非圆柱域中的 3-D 径向对称线性波动方程的 IBVP,其空间域被两个球包围。我们证明了解通常几乎是周期性的。 (4) 我们考虑了空间域为球的时间周期非圆柱域中的 3-D 径向对称非线性波动方程的 BVP。与 (1) BVP 类似的假设有时间周期解。结果似乎很有趣。为了解决这些问题,我们开发了一些有用的方法,该方法包括将波动方程的 BVP 变换为某些泛函。前者由 M. Yamaguchi 建立,后者由 M. Yamaguchi 和 H. Yoshida 建立。该方法基于 M. Yamaguchi 的约简定理。 Herman 和 J. Yoccoz 的周期情况以及 M. Yamaguchi 的准周期情况 Less

项目成果

期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Matsuyama: "L^2-behavior of solutions to the linear heat and wave equations in exterior domains (with R.Ikehata)"Scientiae Mathematicae Japonicae. 55. 33-42 (2002)
T.Matsuyama:“外部域中线性热波方程解的 L^2 行为(与 R.Ikehata 合作)”Scientiae Mathematicae Japonicae。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Yamaguchi: "Nonhomogeneous wave equations in a domain with periodically oscillating boundaries"Proceedings of the 4-th Workshop on Differential Equations. 210-212 (1999)
M.Yamaguchi:“具有周期性振荡边界的域中的非齐次波动方程”第四届微分方程研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Tanaka: "Characterization of a differentiable points of the distance function to the cut locus"J. Math. Soc. Japan. Vol.55, No.1. 231-241 (2003)
M. Tanaka:“到切割轨迹的距离函数的可微分点的表征”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Tanaka: "Characterization of a differentiable point of the distance function to the cut locus"J. Math. Soc. Japan. Vol.55 No.1. 231-241 (2003)
M.Tanaka:“到切割轨迹的距离函数的可微点的表征”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Akamatsu: "Remarks on the rank of a Lie algebra and necessary conditions for hypoellipticity of a degenerate parabolic operator"Proc.School of Sci.Tokai Univ.. 38. 21-31 (2003)
T.Akamatsu:“关于李代数的秩和简并抛物线算子的亚椭圆性的必要条件的评论”Proc.School of Sci.Tokai Univ.. 38. 21-31 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAGUCHI Masaru其他文献

YAMAGUCHI Masaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAGUCHI Masaru', 18)}}的其他基金

Investigation of mechanizm in orthodontocally root resorption through nothch signalinhg in periodontal ligament cells and Th17cells
牙周膜细胞和Th17细胞中Notch信号传导正畸牙根吸收的机制研究
  • 批准号:
    25463200
  • 财政年份:
    2013
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The examination of the expression of chemokines and RANKL in root resorption during orthodontic tooth movement
正畸牙移动过程中牙根吸收趋化因子及RANKL表达的检测
  • 批准号:
    22592297
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of relaxin on collagen metabolism by human periodontal ligament cells
松弛素对人牙周膜细胞胶原代谢的影响
  • 批准号:
    18592252
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
时动边界非圆柱域演化方程解的全局行为
  • 批准号:
    15540213
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interleukin-6 stimulates cathepsin B and L activities of human periodontal ligament cells through the signaling pathways
Interleukin-6通过信号通路刺激人牙周膜细胞的组织蛋白酶B和L活性
  • 批准号:
    14571969
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Behavior of solutions of IBVP witrh periodically moving boundary conditions of evolution equations
具有周期性移动演化方程边界条件的 IBVP 解的行为
  • 批准号:
    09640223
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative Artinian Algebras
交换阿天尼代数
  • 批准号:
    06640077
  • 财政年份:
    1994
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of <C_2> -Symmetrically Substituted Pyrrolidine Chiral Auxiliaries
<C_2>-对称取代吡咯烷手性助剂的开发与应用
  • 批准号:
    59470020
  • 财政年份:
    1984
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

非线性波动方程组的高精度高效保物理特性的数值方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维外区域上非线性波动方程解的长时间行为
  • 批准号:
    12271487
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
非线性随机波动方程的随机保结构算法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性时间分数阶波动方程解的存在性及正则性研究
  • 批准号:
    12101142
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机非线性波动方程的有效动力学
  • 批准号:
    12171343
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of traveling wave and interfacial dynamics in nonlinear diffusion equation
非线性扩散方程中的行波和界面动力学研究
  • 批准号:
    16K05245
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the lifespan and asymptotic behavior of solutions to systems of wave equations with nonlinear terms of long range effects
关于具有长程效应非线性项的波动方程组解的寿命和渐近行为
  • 批准号:
    15K04955
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了