A research on a system of nonlinear partial differential equations describing phase transition phenomena

描述相变现象的非线性偏微分方程组的研究

基本信息

  • 批准号:
    12640166
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Several mathematicians and physicists already proposed some mathematical models consisting of partial differential equations in order to describe dynamics of shape memory alloy materials. In all of them they approximated the relationship between the strain and the stress by polynomials and functions and derived the models. However, in some experiments we know that the relationship is not a usual function and can be express by hysteresis operator, which depends on the historical data. Hence, in this research project we have proposed a new mathematical model including a hysteresis operator without polynomial approximation and studied the model by using the theory for evolution equations governed by time-dependent subdifferentials of convex functions on Hubert spaces. First, we considered the following problem. We already have known that the hysteresis operator is characterized by ordinary differential equations including the subdifferential operator of the indicator function. Then we added the ordinary differential equation to the system consisting of momentum balance law and internal energy balance law. A solution of this system may not satisfy the A smoothness condition so that we approximate the ordinary differential eauations by replacing the parabolic. Our first result is to prove the existence anu uniqueness theorem concerned witn sucn an approximated problem. Next, we applied the classical theory for parabolic equations to our system and showed the wellposedness of our problem without any approximations.
一些数学家和物理学家已经提出了一些由偏微分方程组成的数学模型来描述形状记忆合金材料的动力学。在所有这些模型中,他们通过多项式和函数来近似应变和应力之间的关系,并推导出模型。然而,在一些实验中我们知道这种关系不是通常的函数,可以用滞后算子来表达,这取决于历史数据。因此,在这个研究项目中,我们提出了一种新的数学模型,包括一个没有多项式逼近的磁滞算子,并利用休伯特空间上凸函数的时间相关次微分控制的演化方程理论来研究该模型。首先,我们考虑了以下问题。我们已经知道,滞环算子的特征是常微分方程,包括指示函数的次微分算子。然后我们将常微分方程添加到由动量平衡定律和内能平衡定律组成的系统中。该系统的解可能不满足A平滑条件,因此我们通过替换抛物线来逼近常微分方程。我们的第一个结果是证明与这样的近似问题有关的唯一性定理的存在性。接下来,我们将抛物线方程的经典理论应用到我们的系统中,并在没有任何近似的情况下证明了我们问题的适定性。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aiki,Toyohiko, Naoki: "Phase field equations with constraints under nonlinear dynamic boundary conditions"Communications in Applied Analysis. 5. 215-234 (2001)
Aiki、Toyohiko、Naoki:“非线性动态边界条件下具有约束的相场方程”应用分析通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
ITO, Akio: "Time-dependent attractors of bounded dynamical systems generated by sub-differentials"Comm. Appl. Anal. 5. 403-419 (2001)
ITO,Akio:“由次微分生成的有界动力系统的时间相关吸引子”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
AIKI, Toyohiko: "Numerical computation of Lyapunov exponents related to attractors in a free boundary problem"Nonlinear Analysis. 47. 3823-3833 (2001)
AIKI、Toyohiko:“自由边界问题中与吸引子相关的李雅普诺夫指数的数值计算”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
AIKI, Toyohiko, KADOYA, Atsushi, SATO, Naoki: "Optimal control problem for phase-field equations with nonlinear dynamic boundary conditions"Nonlinear Analysis. 47. 3183-3194 (2001)
AIKI、Toyohiko、KADOYA、Atsushi、SATO、Naoki:“具有非线性动态边界条件的相场方程的最优控制问题”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
AIKI, Toyohiko: "Some models for shape memory alloys"自由境界問題,2001,数理解析研究所講究録. 1210. 167-178 (2001)
AIKI、Toyohiko:“形状记忆合金的一些模型”自由边界问题,2001 年,数学科学研究所 Kokyuroku。1210. 167-178 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIKI Toyohiko其他文献

AIKI Toyohiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIKI Toyohiko', 18)}}的其他基金

Analysis for partial differential equations systems in non-homogeneous regions.
非齐次区域中的偏微分方程组分析。
  • 批准号:
    19K03572
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On development of analytical method for mathematical models including hysteresis and study of the suitability of the models
滞后现象数学模型解析方法的发展及模型适用性研究
  • 批准号:
    24540209
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical modeling for a nonlinear phenomena appearing engineering field and its analysis
工程领域出现的非线性现象的数学建模及其分析
  • 批准号:
    20540205
  • 财政年份:
    2008
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of a non-linear phenomenon mainly on the issue of shape-memory alloy
主要针对形状记忆合金问题的非线性现象分析
  • 批准号:
    16540146
  • 财政年份:
    2004
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear phenomena describing hysteresis operators
描述磁滞算子的非线性现象分析
  • 批准号:
    14540169
  • 财政年份:
    2002
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Uncovering the origin and theoretical design of shape memory alloys by machine learning and first-principles calculations
通过机器学习和第一性原理计算揭示形状记忆合金的起源和理论设计
  • 批准号:
    23K04422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of cryogenic temperature shape memory alloys
低温形状记忆合金的研制
  • 批准号:
    22H01802
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating the Impact of Nanoscale Strain and Concentration Fields on Martensitic Transformations in NiTiHf-based Shape Memory Alloys
阐明纳米级应变和浓度场对 NiTiHf 基形状记忆合金马氏体相变的影响
  • 批准号:
    2226478
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Development of Mn-based reentrant shape memory alloys
锰基可凹形状记忆合金的研制
  • 批准号:
    22K18877
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
An investigation into the effect of composition and processing on the hysteresis width of NiTi shape memory alloys
NiTi形状记忆合金成分和加工对滞后宽度影响的研究
  • 批准号:
    2738194
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了