A research on a system of nonlinear partial differential equations describing phase transition phenomena
描述相变现象的非线性偏微分方程组的研究
基本信息
- 批准号:12640166
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Several mathematicians and physicists already proposed some mathematical models consisting of partial differential equations in order to describe dynamics of shape memory alloy materials. In all of them they approximated the relationship between the strain and the stress by polynomials and functions and derived the models. However, in some experiments we know that the relationship is not a usual function and can be express by hysteresis operator, which depends on the historical data. Hence, in this research project we have proposed a new mathematical model including a hysteresis operator without polynomial approximation and studied the model by using the theory for evolution equations governed by time-dependent subdifferentials of convex functions on Hubert spaces. First, we considered the following problem. We already have known that the hysteresis operator is characterized by ordinary differential equations including the subdifferential operator of the indicator function. Then we added the ordinary differential equation to the system consisting of momentum balance law and internal energy balance law. A solution of this system may not satisfy the A smoothness condition so that we approximate the ordinary differential eauations by replacing the parabolic. Our first result is to prove the existence anu uniqueness theorem concerned witn sucn an approximated problem. Next, we applied the classical theory for parabolic equations to our system and showed the wellposedness of our problem without any approximations.
几位数学家和物理学家已经提出了一些由部分微分方程组成的数学模型,以描述形状记忆合金材料的动力学。在所有这些中,它们近似多项式和功能的应变与应力之间的关系,并得出模型。但是,在某些实验中,我们知道这种关系不是通常的功能,可以由滞后操作员表达,这取决于历史数据。因此,在该研究项目中,我们提出了一个新的数学模型,其中包括一个没有多项式近似的磁滞运算符,并通过使用该理论来研究该模型,用于由凸面上凸的时间依赖性亚分化函数控制的进化方程。首先,我们考虑了以下问题。我们已经知道,滞后操作员的特征是普通微分方程,包括指示器函数的亚分类操作员。然后,我们将普通的微分方程添加到由动量平衡法和内部能量平衡法组成的系统中。该系统的解决方案可能无法满足平滑度条件,因此我们通过更换抛物线代理来近似普通的差异。我们的第一个结果是证明存在anu唯一性定理与witn相关的问题。接下来,我们将经典理论应用于抛物线方程,并在我们的系统中显示出良好的问题,没有任何近似值。
项目成果
期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aiki,Toyohiko, Naoki: "Phase field equations with constraints under nonlinear dynamic boundary conditions"Communications in Applied Analysis. 5. 215-234 (2001)
Aiki、Toyohiko、Naoki:“非线性动态边界条件下具有约束的相场方程”应用分析通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
ITO, Akio: "Time-dependent attractors of bounded dynamical systems generated by sub-differentials"Comm. Appl. Anal. 5. 403-419 (2001)
ITO,Akio:“由次微分生成的有界动力系统的时间相关吸引子”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
AIKI, Toyohiko: "Numerical computation of Lyapunov exponents related to attractors in a free boundary problem"Nonlinear Analysis. 47. 3823-3833 (2001)
AIKI、Toyohiko:“自由边界问题中与吸引子相关的李雅普诺夫指数的数值计算”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
AIKI, Toyohiko, KADOYA, Atsushi, SATO, Naoki: "Optimal control problem for phase-field equations with nonlinear dynamic boundary conditions"Nonlinear Analysis. 47. 3183-3194 (2001)
AIKI、Toyohiko、KADOYA、Atsushi、SATO、Naoki:“具有非线性动态边界条件的相场方程的最优控制问题”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
ITO,Akio and Kenmochi,Nobuyuki: "Inertial set for a phase transition model of Penrose-Fife type"Adv.Math.Sci.Appl.. 10. 353-374 (2000)
ITO,Akio 和 Kenmochi,Nobuyuki:“彭罗斯-法夫型相变模型的惯性集”Adv.Math.Sci.Appl.. 10. 353-374 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIKI Toyohiko其他文献
AIKI Toyohiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIKI Toyohiko', 18)}}的其他基金
Analysis for partial differential equations systems in non-homogeneous regions.
非齐次区域中的偏微分方程组分析。
- 批准号:
19K03572 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On development of analytical method for mathematical models including hysteresis and study of the suitability of the models
滞后现象数学模型解析方法的发展及模型适用性研究
- 批准号:
24540209 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical modeling for a nonlinear phenomena appearing engineering field and its analysis
工程领域出现的非线性现象的数学建模及其分析
- 批准号:
20540205 - 财政年份:2008
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of a non-linear phenomenon mainly on the issue of shape-memory alloy
主要针对形状记忆合金问题的非线性现象分析
- 批准号:
16540146 - 财政年份:2004
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear phenomena describing hysteresis operators
描述磁滞算子的非线性现象分析
- 批准号:
14540169 - 财政年份:2002
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Uncovering the origin and theoretical design of shape memory alloys by machine learning and first-principles calculations
通过机器学习和第一性原理计算揭示形状记忆合金的起源和理论设计
- 批准号:
23K04422 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of cryogenic temperature shape memory alloys
低温形状记忆合金的研制
- 批准号:
22H01802 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidating the Impact of Nanoscale Strain and Concentration Fields on Martensitic Transformations in NiTiHf-based Shape Memory Alloys
阐明纳米级应变和浓度场对 NiTiHf 基形状记忆合金马氏体相变的影响
- 批准号:
2226478 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Development of Mn-based reentrant shape memory alloys
锰基可凹形状记忆合金的研制
- 批准号:
22K18877 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
An investigation into the effect of composition and processing on the hysteresis width of NiTi shape memory alloys
NiTi形状记忆合金成分和加工对滞后宽度影响的研究
- 批准号:
2738194 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Studentship