Applications of integrable systems in geometry and topology
可积系统在几何和拓扑中的应用
基本信息
- 批准号:12640083
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Results were obtained on the geometry and topology of harmonic maps and spaces of harmonic maps, especially in the case where the domain is a Riemann surface and the target space is a compact Lie group or symmetric space. Guest used a generalization of the Weierstrass representation for minimal surfaces to study harmonic maps from the two-dimensional sphere (or, more generally, harmonic maps of finite uniton number, from any Riemann surface) to the unitary group. Earlier results of Uhlenbeck, Segal, Dorfmeister-Pedit-Wu, Burstall-Guest were developed into an effective tool for describing such maps. In particular, an explicit canonical form was obtained, and this was used to study the space of all such maps. The main application was a description of the connected components of the space of harmonic maps from the two-dimensional sphere to the unitary group. Ohnita used a different approach, based on earlier work of Hitchin in gauge theory, to obtain a framework for studying the geometry (in particular, the pre-symplectic geometry) of spaces of harmonic maps.The harmonic map equation can be regarded as an integrable system, and the above work sheds light on other integrable systems. Two other examples of integrable systems were studied from this point of view, and preliminary results obtained. The first example, studied by Guest, was the theory of quantum differential equations. Parallels with harmonic maps were established, forming the basis for future work in this direction. Results on quantum cohomology of symmetric spaces were obtained also by Ohnita and Nishimori, and on quantum cohomology of flag manifolds by Guest and Otofuji. The second example, studied by Burstall and Calderbank, was the integrable systems aspect of conformal and Mobius geometry, and a new approach was initiated.
获得了调和映射和调和映射空间的几何和拓扑的结果,特别是在域是黎曼曲面且目标空间是紧李群或对称空间的情况下。 Guest 使用最小曲面的 Weierstrass 表示的推广来研究从二维球体(或者更一般地说,从任何黎曼曲面的有限单位数的调和映射)到酉群的调和映射。 Uhlenbeck、Segal、Dorfmeister-Pedit-Wu、Burstall-Guest 的早期结果已发展成为描述此类地图的有效工具。特别是,获得了明确的规范形式,并将其用于研究所有此类地图的空间。主要应用是描述从二维球体到酉群的调和映射空间的连通分量。 Ohnita 基于希钦规范理论的早期工作,采用了不同的方法,获得了研究调和映射空间几何(特别是前辛几何)的框架。调和映射方程可以被视为可积系统,上述工作为其他可集成系统提供了启示。从这个角度研究了另外两个可积系统的例子,并得到了初步结果。盖斯特研究的第一个例子是量子微分方程理论。建立了与谐波图的平行关系,为未来这一方向的工作奠定了基础。 Ohnita 和 Nishimori 也获得了对称空间量子上同调的结果,Guest 和 Otofuji 也获得了旗形流形量子上同调的结果。 Burstall 和 Calderbank 研究的第二个例子是共形几何和莫比乌斯几何的可积系统方面,并提出了一种新方法。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Ohnita, M.Mukai: "Gauge theoletic approach to harmonic maps and subspace in moduli spaces"'Integrable systems, Geometry and Topology' (NCYS Volume) International Press.
Y.Ohnita、M.Mukai:“规范调和映射和模空间子空间的理论方法”“可积系统、几何和拓扑”(NCYS 卷)国际出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Guest, T.Otofuji: "Quantum cohomology and the periodic Toda lattice"Communications in Math. Physics. 217. 475-487 (2001)
M.Guest、T.Otofuji:“量子上同调和周期性户田格”数学通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Guest: "Introduction to homological geometry : I"Proceedings of workshop at NCTS (Taiwan). (to appear).
M.Guest:“同调几何导论:I”NCTS(台湾)研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Guest: "Pseudo vector bundles and quasifibrations"Hokkaido J. Math.. 29. 159-170 (2000)
M. Guest:“伪向量丛和准纤维”Hokkaido J. Math.. 29. 159-170 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Guest: "Introduction to homological geometry : II"Proceedings of workshop at NCTS (Taiwan). (to appear).
M.Guest:“同调几何导论:II”NCTS(台湾)研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUEST Martin其他文献
GUEST Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUEST Martin', 18)}}的其他基金
Exploitation of new relations between differential geometry and quantum cohomology in the context of integrable systems
在可积系统的背景下利用微分几何和量子上同调之间的新关系
- 批准号:
21244004 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry and topology of integrable systems, with computer-aided experimentation and visualization
可积系统的几何和拓扑,以及计算机辅助实验和可视化
- 批准号:
14204005 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
奇性空间上的几何分析
- 批准号:11401106
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
图的调和染色及相关边划分问题研究
- 批准号:11401519
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
子流形几何的整体性质研究
- 批准号:11301399
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
图的Randić指标以及调和指标极值问题的研究
- 批准号:11226289
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A variational problem on conformality of maps and a variational problem on pullbacks of metrics
映射共形性的变分问题和度量回调的变分问题
- 批准号:
18K03280 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The representation formulas for a surface of higher codimension and a submanifold and their application
高余维曲面和子流形的表示公式及其应用
- 批准号:
17K05217 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the relationship between attenuated insulin receptor signaling and fibrosis in diabetic tendinopathy
确定糖尿病肌腱病中胰岛素受体信号减弱与纤维化之间的关系
- 批准号:
9108008 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
- 批准号:
15K04851 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)