半正定値計画法による構造物の最適設計法

使用半定规划的结构优化设计方法

基本信息

  • 批准号:
    00J03659
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

2次錐計画法や半正定値計画法などの新しい数理計画法の枠組みを用い,種々の不連続性や非線形性を有する構造物の解析法および最適設計法に関する研究を行った。構造最適化の分野において,最小固有値最大化問題は多くの応用を持つ最適化問題である。ところが,一般に最小固有値は連続微分不可能であるため,既往の手法を用いて本最適化問題を解くことは極めて困難である。本研究では,線形座屈荷重係数を指定したトラスおよび骨組構造物の最適化問題を取り上げ,これを半正定値計画問題に逐次近似し,主双対内点法を用いることで最適解を求める手法を開発した。数値実験を行い,効率よく解が得られることを示した。次に,半正定値計画問題に主双対内点法を適用した場合に,得られる最適解の性質について検討した。即ち,ある群の作用に対して不変性を持つような"対称な半正定値計画問題"を定義し,その中心パスや,内点法で用いられる探索方向の群対称性を示した。従って,例えば対称な形状の構造物に対する構造最適化問題を解いた場合,得られる解の対称性が保証される。ところが,既往の手法では変数のグループ分けなどを用いない限り,非対称な解に収束してしまうことが多い。既往の手法との比較を行い,内点法の解が持つ群対称性は,実用的に有用であることを明らかにした。最後に,幾何学的非線形性を厳密に考慮した下で,ケーブルネットの全ポテンシャルエネルギー最小化問題と等価な2次錐計画問題を定式化し,内点法を用いて釣合形状を得る手法を提案した。ケーブルは,引張応力にしか抵抗できないという不連続性を持っているため,ケーブルにたるみが生じる場合には既往の手法で解を得るのは困難である。また,Fenchel双対理論と2次錐の自己双対性を用いて,応力のみを変数としたコンプリメンタリエネルギー最小化問題を導いた。
利用二次锥规划、半定规划等新的数学规划框架,对具有各种不连续性和非线性的结构进行分析和优化设计方法研究。在结构优化领域,最小特征值最大化问题是一个有很多应用的优化问题。然而,由于最小特征值一般不是连续可微的,因此利用现有方法解决该优化问题极其困难。在本研究中,我们研究了指定线性屈曲载荷系数的桁架和框架结构的优化问题,相继将其近似为半定规划问题,并使用原对偶内点法来找到最优解。进行了数值实验,结果表明可以有效地获得该解。接下来,我们研究了将原对偶内点法应用于半定规划问题时获得的最优解的性质。也就是说,我们定义了一个对某个群的作用不变的“对称正半定规划问题”,并展示了其中心路径的群对称性以及内点法中使用的搜索方向。因此,例如,在求解对称形状结构的结构优化问题时,保证了所得解的对称性。然而,除非使用变量分组,否则现有方法通常会收敛到不对称解。与现有方法的比较表明,内点法解的群对称性具有实际用途。最后,在严格考虑几何非线性的情况下,我们提出了相当于索网总势能最小化问题的二次锥规划问题,并提出了一种使用内点法获得平衡形状的方法。由于电缆具有只能抵抗拉应力的不连续性,当电缆出现松弛时,使用现有方法很难获得解决方案。此外,利用Fenchel的对偶理论和二次锥的自对偶性,我们推导了以应力为唯一变量的互补能量最小化问题。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kanno, Y., Ohsaki, M., Katoh, N.: "Sequential semidefinite programming for optimization of framed structures under multimodal buckling constraints"International Journal of Structural Stability and Dynamics. 1(4). 585-602 (2001)
Kanno, Y.、Ohsaki, M.、Katoh, N.:“多模态屈曲约束下框架结构优化的顺序半定规划”国际结构稳定性与动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanno, Y., Ohsaki, M., Katoh, N.: "Symmetricity of the solution of semidefinite program"Structural and Multidisciplinary Optimization. 24(3). 225-232 (2002)
Kanno, Y.、Ohsaki, M.、Katoh, N.:“半定规划解的对称性”结构和多学科优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanno, Y., Ohsaki, M.: "Necessary and sufficient conditions for global optimality of eigenvalue optimization problems"Structural and Multidisciplinary Optimization. 22(3). 248-252 (2001)
Kanno, Y.,Ohsaki, M.:“特征值优化问题全局最优性的充分必要条件”结构和多学科优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanno, Y., Ohsaki, M., Ito, J.: "Large-deformation and friction analysis o nonlinear elastic cable networks by second-order cone programming"International Journal for Numeric Methods in Engineering. 55(9). 109-1114 (2002)
Kanno, Y.、Ohsaki, M.、Ito, J.:“通过二阶锥规划对非线性弹性电缆网络进行大变形和摩擦分析”国际工程数值方法杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: "Group symmetry in interior-point methods for semidefinite program"Optimization and Engineering. 2(3). 293-320 (2001)
Kanno, Y.、Ohsaki, M.、Murota, K.、Katoh, N.:“半定规划内点方法中的群对称性”优化与工程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

寒野 善博其他文献

Topology optimization of tensegrity structures based on nonsmooth mechanics
基于非光滑力学的张拉整体结构拓扑优化
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日向大樹;楠浩一;山下美帆;服部勇樹;川村学;田才晃;小林聖人,斉木博,鈴木義規,下村美文;寒野 善博;服部勇樹;山下美帆;Y. Kanno
  • 通讯作者:
    Y. Kanno
整数計画を用いたせん断型構造物モデルにおける粘性ダンパーの最適配置法
剪切型结构模型中粘性阻尼器的整数规划优化布置方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    菅野匠, 米山雄二,野口正孝,佐野元昭,川島德道,小林聖人,下村美文,石河睦生;寒野 善博
  • 通讯作者:
    寒野 善博
Coulomb摩擦付き接触問題に対する主双対アルゴリズム
库仑摩擦接触问题的原始对偶算法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akatsuki Nishioka;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;寒野 善博;寒野 善博;寒野 善博;西岡 暁,寒野 善博;寒野 善博
  • 通讯作者:
    寒野 善博
トポロジー最適化における固有値最適化問題に対する平滑化法
拓扑优化中特征值优化问题的平滑方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akatsuki Nishioka;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;Yoshihiro Kanno;寒野 善博;寒野 善博;寒野 善博;西岡 暁,寒野 善博;寒野 善博;西岡 暁,寒野 善博;寒野 善博;西岡 暁,豊田 充,田中 未来,寒野 善博
  • 通讯作者:
    西岡 暁,豊田 充,田中 未来,寒野 善博
混合整数計画を用いた構造物の冗長性の評価法
使用混合整数规划的结构冗余评估方法
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日向大樹;楠浩一;山下美帆;服部勇樹;川村学;田才晃;小林聖人,斉木博,鈴木義規,下村美文;寒野 善博
  • 通讯作者:
    寒野 善博

寒野 善博的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('寒野 善博', 18)}}的其他基金

信頼性トポロジー最適設計の新展開:双対性の視点と加速最適化法を両輪として
可靠性拓扑优化设计新进展:对偶视角与双轮加速优化方法
  • 批准号:
    24K07747
  • 财政年份:
    2024
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形挙動に対するトポロジー最適設計の新展開:統計的推論と加速最適化法を軸として
非线性行为拓扑优化设计新进展:关注统计推断和加速优化方法
  • 批准号:
    21K04351
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
エネルギー逸散・接触を伴う建築構造物の錐相補性条件に基づく高精度非線形解析法
基于锥互补条件的耗能接触建筑结构高精度非线性分析方法
  • 批准号:
    17760453
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
対称錐上の数理計画法に基づく構造物の非線形解析法
基于对称锥体数学规划的结构非线性分析方法
  • 批准号:
    03J04629
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Challenge to Intractable Semidefinite and Second-order Cone Programs
对棘手的半定和二阶锥规划的挑战
  • 批准号:
    18H03206
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploration of Conic Linear Programs and Development of Mathematical Modeling
二次曲线线性规划的探索与数学模型的发展
  • 批准号:
    15H02968
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of fast algorithms for semi-infinite programs with conic constraints and application to practical problems
具有二次曲线约束的半无限规划快速算法的开发及其在实际问题中的应用
  • 批准号:
    15K15943
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Methods and applications for nonlinear second-order cone and semidefinite programming problems
非线性二阶锥和半定规划问题的方法和应用
  • 批准号:
    26730012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Soft-magin support vector machine maximizing geometric margins for multiclass classification
软磁极支持向量机最大化多类分类的几何边距
  • 批准号:
    24500275
  • 财政年份:
    2012
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了