Measuring Financial Risks
衡量财务风险
基本信息
- 批准号:11630026
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main purpose of this project was to re-examine the existing statistical methods often used in measuring financial risks in econometric analysis and financial engineering literatures.First we have inverstigated the major probabilistic methods for analyzing financial risks and evaluation of contingent claim prices. They are based on the theory of stochastic processes, the continuous diffusion processes and the semi-martingale processes in particular, and we have investigated their applications including contingent claim valuation methods. In particular we have developed the new asymptotic expansion approach for evaluating complicated contingent claims when the interest rates are stochastic, which is a promising new approach to the contingent claims evaluations in mathematical finance. Also we have investigated the semi-martingale approach to financial problems and examined the existing pricing methods of credit risks. When there are some default risks in the financial market, it coul … More d be incomplete and we have examined the mathematical finance theories of related problems in the incomplete financial market.Second, we have investigated the statistical methods for measuring financial risks including the statistical time series analysis and statistical survival analysis (statistical reliability theory). In particular we have investigated the copulas which is an extension of the correlation coefficient in stattistical analysis and the state space modeling for investigating the financial risks including the interest rates risks.Third, there have been many new results we have obtained under the research efforts of this project on the financial risk measurements. The details of the results under our research project have been reported in domestic as well as international academic meetings and have been (or will be) reported in academic papers listed in this report.In conclusion, we have acomplished the most important objectives of this project. Six members participated in this projectofficially have written many papers and also stimulated a large number of researchers in the related fields and some statisticians in the academic international perspectives We thank The Ministry of Education, Science, Sports and Culture and Japan Society for the Promotion of Science for giving the generous support to our research project. Less
该项目的主要目的是重新检查经济分析和金融工程文献中经常使用的现有统计方法。首先,我们已经对分析财务风险和评估或有索赔价格评估的主要有问题方法。它们基于随机过程的理论,连续的扩散过程和半木星过程,我们研究了他们的应用程序,包括出现的索赔价值方法。特别是,我们开发了一种新的不对称扩展方法来评估利率随机率时的复杂偶然性主张,这是对数学金融中有意的索赔评估的新方法。另外,我们还研究了用于财务问题的半马丁纳尔方法,并研究了现有的信用风险定价方法。当金融市场中存在一些违约风险时,它要求……更多的D不完整,我们已经检查了不完整的金融市场中相关问题的数学财务理论。第二,我们研究了衡量金融风险的统计方法,包括统计时间序列分析和统计可靠性分析(统计可靠性分析)。特别是我们已经调查了Copulas,这是统计分析中的相关系数的扩展以及调查包括利率风险在内的财务风险的状态空间建模。第三,在该项目的研究工作中,我们已经在财务风险衡量方面获得了许多新的结果。我们的研究项目下的结果的细节已在国内和国际学术会议上报告,并已在本报告中列出的学术论文中进行了报道。总而言之,我们已经实现了该项目最重要的目标。六名成员参与了这一投影,撰写了许多论文,并且在学术国际观点中刺激了许多相关领域的研究人员,一些统计学家在国际观点中,我们感谢教育,科学,体育和文化和日本科学促进社会为我们的研究项目提供慷慨的支持。较少的
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Nishino and Y. Yajima: "Parameter estimation of unit root processes with missing observations"Journal of Japan Statistical Society. Vol.29. 181-200 (1999)
H. Nishino 和 Y. Yajima:“缺少观测值的单位根过程的参数估计”日本统计学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoto Kunitomo, with A.Takahashi.: "On Validity of the Asymptotic Expansion Approach in Contingent Claim Analysis"Mathematical Finance. vol.11. 117-151 (2001)
Naoto Kunitomo 与 A.Takahashi.:“论或然债权分析中渐近展开方法的有效性”数学金融。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoto Kunitomo with A.Takahashi.: "On Validity of the Asymptotic Expansion Approach in Contingent Claim Analysis"Mathematical Finance,. Vol.11. 117-151 (2001)
Naoto Kunitomo 与 A.Takahashi.:“论或然债权分析中渐近展开方法的有效性”数学金融,。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoto Kunitomo with S.Sato: "Stationary and Non-stationary Simultaneous Switching Autoreg ressive Models with an Application to Financial Time Series"Japanese Economic Review. Vol.50 No.2. 161-190 (1999)
Naoto Kunitomo 与 S.Sato:“平稳和非平稳同时切换自调节模型及其在金融时间序列中的应用”日本经济评论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuya Kamiya: "Optimal cost allocation rule in general equilibrium models"数理解析研究所講究録. (近刊).
Kazuya Kamiya:“一般均衡模型中的最优成本分配规则”数学科学研究所 Kokyuroku(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUNITOMO Naoto其他文献
KUNITOMO Naoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUNITOMO Naoto', 18)}}的其他基金
New Developments in Financial Econometrics and Financial Markets in Japan
日本金融计量学和金融市场的新进展
- 批准号:
21243019 - 财政年份:2009
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New Developments in Microeconometrics : Theories and Applications
微观计量经济学的新进展:理论与应用
- 批准号:
18203013 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Theory and Applications of Micro-econometrics
微观计量经济学理论与应用
- 批准号:
15530138 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiparametric Econometrics
半参数计量经济学
- 批准号:
13630026 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Economic Time Series and Seasonal Adjustment Methods
经济时间序列和季节调整方法
- 批准号:
09630024 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-regular Time Series Analysis and Econometric Methods
非正则时间序列分析和计量经济学方法
- 批准号:
06630017 - 财政年份:1994
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Econometric Methods for Financial Markets and Its Applications to Japanese Economy
金融市场计量经济学方法及其在日本经济中的应用
- 批准号:
04301071 - 财政年份:1992
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
New Econometric Methods and Their Applications to Japanese Financial Markets
新计量经济学方法及其在日本金融市场的应用
- 批准号:
01301075 - 财政年份:1989
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Economic Analyses of Rational Expectation Hypotheses and Japanese Economy
理性预期假说与日本经济的经济分析
- 批准号:
60301081 - 财政年份:1985
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似国自然基金
混业经营背景下我国商业银行的非利息业务发展及其影响研究:理论分析与实证检验
- 批准号:71603085
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
- 批准号:
10575081 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Impact of mammalian target of rapamycin inhibitor therapy on aging-related outcomes
雷帕霉素抑制剂治疗哺乳动物靶标对衰老相关结果的影响
- 批准号:
10564036 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Challenging Allergies: The Search for a Magic Bullet for Pediatric Food Allergies
挑战过敏:寻找治疗儿童食物过敏的灵丹妙药
- 批准号:
10578414 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Personalizing Post-Polypectomy Surveillance for Colorectal Cancer Prevention
个性化息肉切除术后监测以预防结直肠癌
- 批准号:
10734405 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
The impact of longitudinal social networks on young adult substance use and misuse
纵向社交网络对年轻人物质使用和滥用的影响
- 批准号:
10741393 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别: