Development of Optimal Algorithms for Partitioning Geometric Data
几何数据分区最优算法的开发
基本信息
- 批准号:10680353
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last two years, we have tried to develop efficient algorithms for optimally partitioning geometric data such as point set in the plane and pixel data on two-dimensional grid. The problems we studied and results we obtained are summarized as follows.(1) we deal with a vehicle routing on a tree-shaped network with a single depot. Customers are located on vertices of the tree, and each customer has a positive demand. Demands of customers are served by a fleet of identical vehicles with limited capacity. It is assumed that the demand of a customer is splittable. We considered the problem for finding a set of tours with minimum total lengths. In the first year, we showed that the problem is NP-complete and proposed a 1.5-approximation algorithm for the problem. We also performed some computational experiments. In the second year, the approximation ration is improved to 1.35 by further refining the first algorithm.(2) We considered the problem of finding an optimal interval in one-dimensional array and a region in two-dimensional array under several optimality criteria. In particular, we shall consider the problem of finding an interval I∈[1,n] that maximizes the interclass variance. We shall present an O(n log n)time algorithm for this problem. We then extend this algorithm to two-dimensional case. Namely, given a N×N two-dimensional array, the problem seeks to find a rectangular subarray R with maximum interclass variance. We developed an O(NィイD13ィエD1)algorithm.(3) We considered the problem of finding two-dimensional association rules for categorical attributes and developed an algorithm based on semidefinite programming.
在过去的两年中,我们必须开发最佳分区的算法,例如平面中的ASET和二维网格的数据,并总结了我们所研究的结果。单个仓库的需求。 -porte and proted A Approximation算法对于问题,我们在第二年进行了一些计算。 t在严重程度标准下的一维数组和artegion。然后,我们将此算法扩展到二维情况,我们开发了O(N -I D13 YIE D1)。基于编程的算法。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mashe Dror,J.Blazewice,W.Kubiak,N.Katoh,H.Rock: "Rescue Constraind Chain Scheduling and Serializability Problem." Operations Research. Vol.46,NO.5. 742-746 (1998)
Mashe Dror、J.Blazewice、W.Kubiak、N.Katoh、H.Rock:“救援约束链调度和可串行性问题。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
浅野 哲夫: "木構造ネットワーク上の車両配送計画問題の新しい近似解法"情報処理学会研究報告. 99-AL-68. (1999)
Tetsuo Asano:“树结构网络上车辆交付规划问题的一种新的近似解决方法”,日本信息处理协会研究报告 99-AL-68。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Katoh: "Finding an Optimal Region in One-and Two-Dimensional Arrays"IEICE Transactions on Fundamentals, March. (2000)
N.Katoh:“在一维和二维数组中寻找最佳区域”IEICE 基础交易,三月。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hamaguchi,N.Katoh: "A vehicle scheduling problem on a tree" Proc.of ISAAC'98,Springer-Verag. 397-406 (1998)
S.Hamaguchi,N.Katoh:“树上的车辆调度问题”Proc.of ISAAC98,Springer-Verag。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Katoh: "Parametric polymatroid optimization and its geometric applications"Proc. of 9th ASM/SIAM Symposium on Discrete Algorithms. 517-526 (1999)
N.Katoh:“参数多拟阵优化及其几何应用”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATOH Naoki其他文献
KATOH Naoki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATOH Naoki', 18)}}的其他基金
Computational Geometry and Discrete Optimization in Architecture and Urban Planning
建筑和城市规划中的计算几何和离散优化
- 批准号:
21300003 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Extraction of Geometric Structures in Architecture and City Planning and Development of their Enumeration Algorithms
建筑和城市规划中几何结构的提取及其枚举算法的开发
- 批准号:
19500013 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical Algorithms for Knowledge Discovery from High-Dimensional Data based on Computational Geometry
基于计算几何的高维数据知识发现实用算法
- 批准号:
17500007 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Algorithms for Geometric Optimization and Data Analysis in Architecute
Architecute 中几何优化和数据分析算法的开发
- 批准号:
13680412 - 财政年份:2001
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of geometric algorithms in architectural planning and architectural structures
建筑规划和建筑结构中几何算法的开发
- 批准号:
10205214 - 财政年份:1998
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Development of an Exact Algorithm for Computing Minimum Weight Triangulations
计算最小权重三角剖分的精确算法的开发
- 批准号:
08680377 - 财政年份:1996
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Construction and Evaluation of Parallel and Randomized Algorithms for Network Optimization Problems
网络优化问题并行随机算法的构建与评估
- 批准号:
05680281 - 财政年份:1993
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
基于数据与几何约束双驱动的水面无人艇弱观测融合感知方法研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
顾及星间观测和激光测距数据几何增强的北斗卫星精密定轨研究
- 批准号:42304025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
哈密翼龙飞行适应研究——基于颅内模和内耳骨迷路的CT数据及几何形态分析
- 批准号:42302003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双曲最优传输的几何计算及其在大规模三维场景数据优化中的应用
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
- 批准号:
10637960 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Multiscale data geometric networks for learning representations and dynamics of biological systems
用于学习生物系统表示和动力学的多尺度数据几何网络
- 批准号:
2327211 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant