A graph theoretic model and the design of routing algorithms for optical networks

光网络的图论模型和路由算法设计

基本信息

  • 批准号:
    10680352
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

We constructed a fixed routing model in which fault-tolerance of optical networks can be evaluated and we obtain the following results in the model.1. The surviving route graph R(G,ρ)/F for a graph G, a routing p and a set of faults F is a directed graph consisting of nonfaulty nodes with a directed edge from a node x to a node y if there are no faults on the route from x to y. The diameter of the surviving route graph (denoted by D(R(G,ρ)/F) could be one of the fault-tolerance measures for the graph G and the routine p. We show that we can construct a routing for any triconnected planar graph with a triangle such that a diameter of the surviving route graphs is two (thus optimal) for any faults F(|F|【less than or equal】 2). We also show that we can construct a routing λ for every n-node k-connected graph such that n 【greater than or equal】 2kィイD12ィエD1, in which the route degree is O(kィイD8nィエD8), the total number of routes is O(kィイD12ィエD1n)DA and D(R(G,λ)/F) 【less than or equal】 3 for … More any fault set F(|F| < k) and we can construct a routing ρィイD21ィエD2 for every n-node biconnected graphs, in which the total number of routes is O(n) and D(R(G,ρィイD21ィエD2)/{f}) 【less than or equal】 2 for any fault f, and using ρィイD21ィエD2 a routing ρィイD22ィエD2 for every n-node biconnected graphs, in which the route degree is O(ィイD8nィエD8), the total number of routes is O(nィイD8nィエD8) and D(R(G,ρィイD22ィエD2)/{f}) 【less than or equal】 2 for any fault f.2. We describes efficient algorithms for partitioning a K-edge-connected graph into k edge-disjoint connected subgraphs, each of which has a special number of elements (vertices and edges). If each subgraph contains the specified element (called base), we call this problem the mixed k-partition problem with bases (called k-PART-WB), otherwise we call it the mixed k-partition problem without bases (called k-PART-WOB). This partition problems can be used to define optimal fault-tolerant routings. We show that k-PART-WB always has a solution for every k-edge-connected graph and we consider the problem without bases and we obtain the following results : (1) for any k 【greater than or equal】 2, k-PART-WOB can be solved in O(|V|ィイD8|V|logィイD22ィエD2BV|ィエD8+|E|) time for every 4-edge-connected graph G = (V, E), (2) 3-PART-WOB can be solved in O(|V|ィイD12ィエD1) for every 2-edge-connected graph G = (V,E) and (3) 4-PART-WOB can be solved in O(|E|ィイD12ィエD1) for every 3-edge-connected graph G = (V,E). We also show that if the input graph is planar, all the k-partition problems stated above can be solved in linear time. Less
我们构建了一个固定的路由模型,其中可以评估光网络的故障耐受性,并在模型中获得以下结果。1。对于图G,一个路由P和一组故障F的生存路线图R(G,ρ)/F是一个有向图F,该图由非故障节点组成,如果从X到Y的路由上没有故障,则具有从节点X到节点Y的指向边缘的非故障节点。生存路线图的直径(由d(r(g,ρ)/f表示)可以是图G和常规p的耐故障度量之一。我们表明,我们可以使用三角形的任何触发平面图构造一个路由,该图形与三角形的触发平面图相比,与生存路线的直径相比,您可以在任何情况下(因此)构建2(或者),或者比较forte for for n. fiptals for n fort(| f。每个N节k连接图的路由λ,使得n [大于或相等] 2KII D12,其中途径度为O(K,D8N,D8),途径的总数为O(K,D12N,D1N,D1N)DA和D(r(g,λ)/F)[小于或等于] for for Inter for…for Inter for(r(r(g,λ)/f), D21n, D2 for every n-node biconnected graphs, in which the total number of routes is O(n) and D(R(G,ρ, D21, D2)/{f}) [less than or equal] 2 for any fault f, and using ρ, D21, D2 a routing ρ, D22, D2 For every n-node biconnected graphs, in which the route degree is O(D8nie D8),路由的总数为O(D8NIE D8)和D(r(g,ρnied22nie d2)/{f})[对于任何故障f.2而言,小于或等于] 2。我们描述了将k边缘连接的图分配到k边界连接的子图中的有效算法,每个图都有特殊数量的元素(顶点和边缘)。如果每个子图包含指定的元素(称为基础),则将此问题称为混合k分区问题(称为k-part-wb),否则我们将其称为“混合k部分问题”,而没有碱基(称为k-part-wob)。该分区问题可用于定义最佳耐故障路由。我们表明,k-part-wb始终为每个k边缘连接的图都有解决方案,我们在没有基础的情况下考虑问题,我们获得以下结果:(1)对于任何k [大于或相等] 2,k-part-wob可以在O(| v | ii d8 | v | logi d22bv | ii d22bv | ii d8+| e | e | e | e | e | e | e | e | e | e | e | e | e | e | e | e | e | e | ii | ii | |对于每2 edge连接的图G =(V,E)和(3)4部分WOB可以在O(| E | II D12 D1 D1)中求解在O(| V | II D12 D1)中的O(| V | II D12 D1)中。我们还表明,如果输入图是平面,则可以在线性时间内解决上述所有K分区问题。较少的

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Wada,W.Chen: "Linear Algorithms for a k-partition problem of planar graphs without specifying bases" Lecture Notes in Computer Science Graph-Theoretic Concepts in Computer Science. 1517. 324-336 (1998)
K.Wada、W.Chen:“不指定基数的平面图 k 划分问题的线性算法”计算机科学中的图论概念讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
永田,陳,和田: "(1)3連結平面的グラフに対する最適な耐故障性ルーティング"電子情報通信学会技術報告. COMP-99-3. 17-24 (1999)
Nagata、Chen、Wada:“(1) 3 连接平面图的最佳容错路由”COMP-99-3 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Wada: "(4)Optimal Fault-Tolerant Routings on Surviving Route Graph Model"Proc,of International Comference on Advances in Infrastructure for Electronic Business,Science,and Education on the Internet. (to appear). (2000)
K.Wada:“(4)存活路由图模型上的最优容错路由”,国际电子商务、科学和教育基础设施进展会议的会议记录。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Wada, W. Chen: "Linear Algorithms for a k-partition Problem of Planar Graphs without Specifying Bases"Lecture Notes in Computer Science. 1517. 324-336 (1998)
K. Wada、W. Chen:“不指定基数的平面图 k 划分问题的线性算法”计算机科学讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WADA Koichi其他文献

WADA Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WADA Koichi', 18)}}的其他基金

Olympism seen from Coubertin's words and actions after the resignation of the International Olympic Committee President
从国际奥委会主席顾拜旦的言行看奥林匹克主义
  • 批准号:
    17K01697
  • 财政年份:
    2017
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Limitations of Massively Parallel Computation on Distributed Environment
分布式环境下大规模并行计算的局限性
  • 批准号:
    26330020
  • 财政年份:
    2014
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crossover Point between the Modern Olympism and the Ancien Olympic Games as knowledge and education in Meiji era Japan
日本明治时代现代奥林匹克主义与古代奥林匹克运动会知识与教育的交叉点
  • 批准号:
    25350788
  • 财政年份:
    2013
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Corpus Linguistics' Approach to the Historical Study on the Reception ofOlympism in Japan
日本奥林匹克主义接受历史研究的语料库语言学进路
  • 批准号:
    22500597
  • 财政年份:
    2010
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The origin of the Japanese interpretation of Coubertin Olympism
日本对顾拜旦奥林匹克主义解释的起源
  • 批准号:
    19500553
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on construction of self-organized sensor networks and distributed sensor fusion
自组织传感器网络构建与分布式传感器融合研究
  • 批准号:
    17500036
  • 财政年份:
    2005
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cluster Network with the Capability of Autonomously Supporting Parallel and Distributed Computing
具有自主支持并行和分布式计算能力的集群网络
  • 批准号:
    14580361
  • 财政年份:
    2002
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design Paradigm for Parallel Algorithms and Realizability of Theoretical Parallel Computer Models
并行算法设计范式及理论并行计算机模型的可实现性
  • 批准号:
    10205209
  • 财政年份:
    1998
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)

相似国自然基金

基于故障检测与流量分析的低功耗片上网络可靠性最优路径容错路由算法研究
  • 批准号:
    61471407
  • 批准年份:
    2014
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
面向大规模移动传感器网络的路由智能容错方法研究
  • 批准号:
    61401257
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
裂痕故障块:一种面向二维或多维网格网络拓扑的容错自适应路由机制的研究与应用
  • 批准号:
    61300230
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
千核级高性能、可容错无缓冲片上网络关键技术研究
  • 批准号:
    61303066
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
空间信息网络协议体系关键技术研究
  • 批准号:
    91338108
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CAREER: Storage-Aware Fault Tolerance
职业:存储感知容错
  • 批准号:
    2339784
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Unlocking the potential of Quantum LDPC Codes for low-overhead fault-tolerance
释放量子 LDPC 码在低开销容错方面的潜力
  • 批准号:
    EP/Y004620/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Research Grant
CRII: SaTC: RUI: When Logic Locking Meets Hardware Trojan Mitigation and Fault Tolerance
CRII:SaTC:RUI:当逻辑锁定遇到硬件木马缓解和容错时
  • 批准号:
    2245247
  • 财政年份:
    2023
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了