Synthesis of Hyperbranched Polyether Macromonomers and Ion-conducting Behavior of Their Polymer Electrolytes

超支化聚醚大单体的合成及其聚合物电解质的离子传导行为

基本信息

  • 批准号:
    10650878
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

Progress of the study of ion-conducting polymers stimulates to alter conventional electrochemical systems, which consist of electrolytes and liquid electrolytes, to solid electrochemical systems. Polymer electrolytes have, thus, occupied an important position in solid state electrochemistry, because of their unique properties, such as thin film forming property, good processability, flexibility, light weight, elasticity (plasticity), and transparency as well as relatively high ionic conductivity and wide potential window in the solid states. Especially, it has been considered to be important and promising to apply polymer electrolytes to solid-state lithium/polymer batteries, which ensure safety, high energy density, freedom in shape geometry, and processability in large-scale-production. The development of large-scale high-energy-density rechargeable lithium/polymer electrolyte batteries, applicable to electric vehicles, is one of the most challenging science and technology in solid s … More tate electrochemistry.Polymer electrolytes are solid solutions of electrolyte salts in ion-conducting polymers and exhibit relatively high ionic conductivity at ambient temperatures. Ion transport in the polymer electrolytes is considered to be cooperative with local segmental motion of the polymers. In this study, polyether-based ion-conducting polymers having free chain ends in high densities have been prepared as matrixes for electrolyte salts. Our working concept of this study to achieve highly conducting polymer electrolytes is that fast molecular motion of short and flexible ether side chains in the matrix polymers would contribute to fast ion transport. 2-(2-Methoxyethoxy)ethyl glycidyl ether (MEEGE) has been copolymefized with ethylene oxide (EO) to obtain P(EO/MEEGE) as the matrix polymers. EO and MEEGE were copolymerized by KOH-catalyzed ring-opening anionic polymerization in the presence of 2-(2-methoxyethoxy)ethanol to give OH-terminated oligomers, followed by esterification reaction of the OH groups by acrylic acid to give P(EO/MEEGE) macromonomers. The macromonomer/salt solutions containing a photo-initiator were cast on glass plates and irradiated with UV light, resulting to from network polymer electrolytes. The conductivity for the network polymer electrolytes, which give the best conductivity in this study, reaches 10ィイD1-4ィエD1 ScmィイD1-1ィエD1 and 10ィイD1-3ィエD1 ScmィイD1-1ィエD1 at 30℃ and at 80℃, respectively, and even at 0℃ it is close to 10ィイD1-5ィエD1 ScmィイD1-1ィエD1. Although LiィイD1+ィエD1 transport number of the polymer electrolytes is lower than 0.5, as is generally seen polyether based polymer electrolytes, the electrochemically stable domain is wider than 4 V vs. Li/LiィイD1+ィエD1. The presence of the conductivity maximum as a function of the macromonomer molecular weight, irrespective of the constant Tg, indicates that the dendritie-side-chain motion that can not be scaled by Tg and mainly affects the fast ion transport. The introduction of hyper-branched structure is quite effective to achieve fast ion transport in polymer electrolytes. Less
离子传导聚合物的研究的进展刺激了由电解质和液体电解质组成的传统电化学系统的刺激,以将其转化为固体电化学系统。因此,聚合物电解质在固态电化学中具有重要的位置,因为它们具有独特的特性,例如薄膜形成特性,良好的加工性,柔韧性,轻质重量,弹性(可塑性)以及相对较高的离子电导率以及相对较高的电导率和固态的广泛窗口。特别是,它被认为是重要的,并且有望在固态锂/聚合物电池上施加聚合物电解质,从而确保安全性,高能量密度,形状几何形状的自由度以及大规模生产中的加工性。适用于电动汽车的大型高能密度可充电锂/聚合物电解电池的开发是固体S中最挑战的科学和技术之一……更多的潮流电解质器电解质是在离子键入聚合物和有效的高离子电势的电解质盐的固体溶解度。聚合物电解质中的离子转运被认为与聚合物的局部节段运动是合作的。在这项研究中,具有高密度的自由链末端的基于聚醚的离子传导聚合物已作为电解质盐的基质制备。我们在这项研究中实现高导电聚合物电解质的工作概念是,基质聚合物中短而柔性的醚侧链的快速分子运动将有助于快速离子传输。 2-(2-甲氧基乙氧基)乙基乙醚(MEEGE)已与氧化乙烷(EO)共聚,以获得P(EO/MEEGE)作为基质聚合物。在存在2-(2-甲氧乙氧基氧基)乙醇的情况下,通过KOH催化的环境聚合聚合共聚了EO和MEEGE,以给出OH终止的寡聚物,然后通过丙烯酸将OH基团酯化反应给出P(EO/MEEGE)巨型摩ranomenomenoners。在玻璃板上施放包含光吸收剂的大量机器人/盐溶液,并用紫外线照射,导致网络聚合物电解质。在这项研究中给出最佳电导率的网络聚合物电解质的电导率分别达到10d1-4d1 SCMD1-1D1和10D1-3D1 SCMD1-1D1在30℃和80℃时,甚至在0℃时,它接近10d1-5d1 scmd1-1d1。尽管聚合物电解质的LII D1+D1的传输数低于0.5,如通常可以看出的基于聚醚的聚合物电解质,但电化学上稳定的域宽于4 V,而Li/Lii D1+IE D1。无论恒定TG,电导率最大的存在与宏观经理分子量的函数,这表明无法通过TG缩放并主要影响快速离子运输的树突侧链运动。超细胞结构的引入对于在聚合物电解质中实现快速离子传输非常有效。较少的

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Uedono,S.Tanigawa A.Nishimoto,M.Watanabe: "Open Spaces and Molecular Motions of Polyether-Based Network Polymers Probed by Positron Annihilation" J.Polym.Sci.,Part B,Polym.Phys.36. 1919-1925 (1998)
A.Uedono,S.Tanikawa A.Nishimoto,M.Watanabe:“通过正电子湮灭探测聚醚基网络聚合物的开放空间和分子运动”J.Polym.Sci.,B 部分,Polym.Phys.36。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Endo,A.Nishimoto M.Watanabe,et al.: "High Ionic Conductivity and Electrode Interface Properties of Polymer Electrlytes Based on High Molecular Weight Branched Polyether" J.Power Sources. (in press). (1999)
T.Endo、A.Nishimoto M.Watanabe 等人:“基于高分子量支化聚醚的聚合物电解质的高离子电导率和电极界面性能”J.Power Sources。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Amanokura, Y. Suzuki, S. Imabayashi, M. Watanabe: "Preparation of Polypyrrole/Polymer Electrolytes Composites with Concentration Gradient of Polyprrole as Cathode/Electrolyte Material for Lithium Secondary Battery"Electrochemistry. 67. 1159-1161 (1999)
J. Amanokura、Y. Suzuki、S. Imabayashi、M. Watanabe:“以聚吡咯浓度梯度作为锂二次电池正极/电解质材料的聚吡咯/聚合物电解质复合材料的制备”电化学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Nishimoto,M.Watanabe Y.Ikeda,S.Kohjiya: "High Ionic Conductivity of New Polymer Electrolytes based on High Molecular Weight Polyether Comb Polymers" Electrochem.Acta. 43. 1177-1184 (1998)
A.Nishimoto,M.Watanabe Y.Ikeda,S.Kohjiya:“基于高分子量聚醚梳状聚合物的新型聚合物电解质的高离子电导率”Electrochem.Acta。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Watanabe, Y. Suzuki, A. Nishimoto: "Single Ion Conduction in Polyether Electrolytes Alloyed with Lithium Salt of A Perfluorinated Polymide"Electrochem. Acta.. 45. 1187-1192 (2000)
M. Watanabe、Y. Suzuki、A. Nishimoto:“与全氟化聚酰亚胺的锂盐合金的聚醚电解质中的单离子传导”Electrochem。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Masayoshi其他文献

Molten Li Salt Solvate-Silica Nanoparticle Composite Electrolytes with Tailored Rheological Properties
具有定制流变特性的熔融锂盐溶剂化物-二氧化硅纳米颗粒复合电解质
  • DOI:
    10.5796/electrochemistry.20-00016
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    MARIUM Mayeesha;UENO Kazuhide;DOKKO Kaoru;WATANABE Masayoshi
  • 通讯作者:
    WATANABE Masayoshi
Rate Performance of LiCoO<sub>2</sub> Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties
使用高浓度双(氟磺酰基)酰胺锂电解质的LiCoO<sub>2</sub>半电池的倍率性能及其与传输性能的相关性
  • DOI:
    10.5796/electrochemistry.21-00052
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    KONDOU Shinji;DOKKO Kaoru;WATANABE Masayoshi;UENO Kazuhide
  • 通讯作者:
    UENO Kazuhide
Phase Behaviors and Ion Transport Properties of LiN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>/Sulfone Binary Mixtures
LiN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>/砜二元混合物的相行为和离子传输性质
  • DOI:
    10.5796/electrochemistry.23-00019
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    TATARA Ryoichi;UGATA Yosuke;MIYAZAKI Shuhei;KISHIDA Natsuki;SASAGAWA Shohei;UENO Kazuhide;TSUZUKI Seiji;WATANABE Masayoshi;DOKKO Kaoru
  • 通讯作者:
    DOKKO Kaoru
トポロジー制御により深化する超分子ポリマー
超分子聚合物通过拓扑控制深化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TATARA Ryoichi;UGATA Yosuke;MIYAZAKI Shuhei;KISHIDA Natsuki;SASAGAWA Shohei;UENO Kazuhide;TSUZUKI Seiji;WATANABE Masayoshi;DOKKO Kaoru;矢貝史樹
  • 通讯作者:
    矢貝史樹
未踏化学空間をいかに探索するか?
如何探索未探索的化学空间?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TATARA Ryoichi;UGATA Yosuke;MIYAZAKI Shuhei;KISHIDA Natsuki;SASAGAWA Shohei;UENO Kazuhide;TSUZUKI Seiji;WATANABE Masayoshi;DOKKO Kaoru;矢貝史樹;内山 真伸
  • 通讯作者:
    内山 真伸

WATANABE Masayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Masayoshi', 18)}}的其他基金

Development of Soft Material Using Ionic Liquids
利用离子液体开发软材料
  • 批准号:
    23245046
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
development of high-power quasi-cw vuv coherent light source
高功率准连续波VUV相干光源的研制
  • 批准号:
    21360029
  • 财政年份:
    2009
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional Design of Ionic Liquids on the Basis of Understandings of the Ion Dynamics and Ionicity
基于离子动力学和离子性理解的离子液体的功能设计
  • 批准号:
    17073009
  • 财政年份:
    2005
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Fundamental Studies on Ionic Liquids and Ion Gels for Functional Materials
功能材料用离子液体和离子凝胶的基础研究
  • 批准号:
    16205024
  • 财政年份:
    2004
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Designer Chemistry of Ionic Liquids and ion Gels
离子液体和离子凝胶的设计化学
  • 批准号:
    14350452
  • 财政年份:
    2002
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chemical Energy and Information Conversion by Utilizing Molecular Synchronization of Polymer Networks
利用聚合物网络的分子同步化进行化学能和信息转换
  • 批准号:
    11167234
  • 财政年份:
    1998
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Chemical Information Conversion System by Using Hydrogel-Modified Ultramicroelectrodes
使用水凝胶修饰超微电极的化学信息转换系统
  • 批准号:
    04650813
  • 财政年份:
    1992
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了