Monitoring of Thermal Environment in Space Using Acoustic Probe

利用声探头监测空间热环境

基本信息

  • 批准号:
    10650402
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The propagation velocity of sound is often used to measure temperature. The sound probe has the advantage of non-contact sensing and quick response. By combining a sound probe with computerized tomography (CT) and data interpolation, an image of temperature distribution through space can be reconstructed. We have proposed methods for measuring the mean temperature and the temperature distribution in two-dimensional space using an acoustic CT (A-CT) method with a very small number of acoustic transducers. This monitoring system can be set up easily and can monitor the atmosphere any time. This system has the advantage that it can be used in such applications as indoor environment evaluation, air conditioning, and energy conservation.As a result of the foundational research over two years, next facts were proven. The thermometry using the sound probe confirmed being suitable for environmental monitoring of large-scale space of several thousand mィイD12ィエD1, life space of several mィイD12ィエD1 … More and enclosed space of several cmィイD12ィエD1. This study can also contribute to environmental problem such as the dioxin prevention. Outlines of achieved research result are as follows.(1) Temperature Measurement Using Sound Probe and its Measurement Error ィイD11,2)ィエD1A burst of sound created by the computer is connected to a transmitter via the digital-to-analog (D-A) converter, and the received signal is applied to the computer via the analog-to-digital (A-D) converter. The time of flight of the sound is measured from the correlation in time between the created burst signal data and the measured signal. The time resolution is exactly 4 μs because the sampling frequency was exactly 250 kHz. Using a short base line, the measurement of mean temperature was possible at the accuracy of 0.5゜C or less.(2) Measurement of Temperature Distribution in Rectangular Space ィイD13)ィエD1The measured object is a rectangular space of size 4,020 mm (D) × 4,200 mm (W) partitioned into a 3 × 3 grid, with 9 unit cells. By arranging a certain geometrical property of the sound propagation path, we can formulate an expression for the temperature distribution as a matrix function of the sound velocity. Twelve transducers are installed in contact with the four walls. We create a temperature gradient throughout the room using an electrical heat source. Experimental reconstruction results of the room temperature distribution were in agreement with the distributions estimated from the temperature profiles of the heat sources.(3) Measurement of Temperature Distribution in Circular Space ィイD14)ィエD1The measured object is a circular space with a radius of 1,480mm. Sixteen transducers are installed on the circular stage. Without a mechanical motion, projection data for the reconstruction is acquired by electronic scanning. We reconstruct the temperature distribution by interpolation from a small number of data set. Electrical heaters create a temperature gradient in space. The temperature profile is measured by 19 thermocouples and used for a computer simulation. Experimentally reconstructed images are in agreement with the simulated images.(4) Space Thermometry Using Delay Line Oscillator ィイD15)ィエD1Acoustic thermometry in space using a double-delay line oscillator is described. The delay line oscillator is one of the important components in the sensor systems. In this study, an adverse effect of a discontinuous oscillation was solved with the adoption of the acoustic technique, which uses multiple oscillators. An experimental result at 40 kHz shows that the error of measured room temperature is 1.5%, in a room of size 4,020 mm (D) × 4,200 mm (W) × 3,550 (H), with air conditioning. The acoustic thermometry proposed in this study has advantages over conventional methods, for such applications as atmospheric monitoring and air conditioning. Less
声音的传播速度用于测量温度。声音探针具有非接触和快速响应的优势。我们已经提出了使用版本的二维空间中的平均温度和二维空间中的温度分布。对两个Youars的基础研究,使用声音探针证明了对温度的证明,证实是对数千个M 12 YIE D1的大空间的供应监测…环境问题,例如预防二恶英,使用声音探针及其测量误差Lee D11,2)Yi D1A由计算机产生的声音爆发已连接到发射器(D-A)转换器,并将接收的信号应用于计算机 - 数字(A-d)转换器的飞行时间是从TWRST数据和测量的信号之间的时间。通过9个单位细胞分配到3个单位细胞中从室温分布与ASURE的温度估计的分布是一个半径为1,480mm的圆形空间。通过电子扫描,我们通过少量数据组来重建温度。使用双日线振荡器的空间在这项研究中被描述了。测得的室温为1.5%F尺寸为4,020 mm(d)x 4,200 mm(w)x 3,550(h)这项研究中支撑的声学温度比有优势

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
石川、水谷、永井: "複合音響遅延線発振器を用いる空間温度測定"第20回超音波エレクトロニクスとその応用に関するシンポジウム講演論文集. 20. 229-230 (1999)
Ishikawa、Mizutani、Nagai:“使用复合声学延迟线振荡器进行空间温度测量”第 20 届超声波电子学及其应用研讨会论文集 20. 229-230 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
船越、水谷、永井、原川、横山: "超音波CT法を用いた少数データからの温度分布測定"平成11年秋季日本音響学会講演論文集. II. 1191-1192 (1999)
Funakoshi、Mizutani、Nagai、Harakawa、Yokoyama:“使用超声波 CT 方法测量少量数据的温度分布”1999 年秋季日本声学学会会议记录 II 1191-1192(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
船越,水谷,永井,原川: "伝搬方向に温度分布測定分解能を持つ音響波プローブ" 平成11年春季日本音響学会講演論文集. 1023-1024 (1999)
Funakoshi、Mizutani、Nagai、Harakawa:“传播方向上具有温度分布测量分辨率的声波探头”日本声学学会 1999 年春季会议记录 1023-1024 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
井口,船越,水谷,永井: "音響ホログラフィ法を用いるコーン型スピーカーの振動位置同定" 平成11年春季日本音響学会講演論文集. 1091-1092 (1999)
Iguchi、Funakoshi、Mizutani、Nagai:“利用声全息法识别锥形扬声器的振动位置”日本声学学会 1999 年春季会议记录 1091-1092 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
水谷,永井,原川,船越,西崎,釜田: "音響波による空間温度分布の推定" 第37回計測自動制御学会学術講演会講演予稿集. 135-136 (1998)
Mizutani、Nagai、Harakawa、Funakoshi、Nishizaki、Kamata:“利用声波估计空间温度分布”第 37 届仪器与控制工程师学会学术会议记录 135-136 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIZUTANI Koichi其他文献

Underwater acoustic communication using orthogonal signal division multiplexing with windowing
使用正交信号分割复用加窗的水声通信
  • DOI:
    10.35848/1347-4065/ac51e5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Tabata Yushi;EBIHARA Tadashi;OGASAWARA Hanako;WAKATSUKI Naoto;Zempo Keiichi;MIZUTANI Koichi
  • 通讯作者:
    MIZUTANI Koichi
Underwater acoustic positioning in multipath environment using time-of-flight signal group and database matching
使用飞行时间信号组和数据库匹配的多路径环境下的水声定位
  • DOI:
    10.35848/1347-4065/ac6a3d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yoshihara Tohru;EBIHARA Tadashi;MIZUTANI Koichi;Sato Yuma
  • 通讯作者:
    Sato Yuma
SELF-LOCALIZATION METHOD USING ACOUSTIC REFLECTION FOR INSPECTION ROBOT IN UNDERGROUND ENVIRONMENTS
地下环境下巡检机器人声反射自定位方法
EXPERIMENTS ON UNDERWATER POSITIONING OF MOBILE OBJECTS IN MULTIPATH ENVIRONMENTS USING SOUND WAVE PROPAGATION TIME GROUPS AND DATABASE MATCHING
利用声波传播时间组和数据库匹配的多路径环境下移动物体水下定位实验
  • DOI:
    10.2208/jscejj.22-22012
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YOSHIHARA Tohru;EBIHARA Tadashi;MIZUTANI Koichi
  • 通讯作者:
    MIZUTANI Koichi

MIZUTANI Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIZUTANI Koichi', 18)}}的其他基金

Creation of a pest security platform for wide-area facility horticulture using a cloud-based acoustic identification method
使用基于云的声学识别方法创建广域设施园艺害虫安全平台
  • 批准号:
    18K19245
  • 财政年份:
    2018
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Basic Study on Behavior Disturbance of Whitefly by Acoustic Means
声学手段干扰烟粉虱行为的基础研究
  • 批准号:
    21658083
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research

相似国自然基金

基于X射线计算机断层扫描研究土壤胞外酶微观空间分布特征
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
云南元江狭域特有植物的水力结构及其适应干热生境的生理机理
  • 批准号:
    31901285
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
LRRK2-PD进展的免疫相关影像标志物研究
  • 批准号:
    81901285
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病的动态脑功能网络拓扑特性及其病理基础研究
  • 批准号:
    81901824
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于CT影像组学量化肿瘤免疫微环境及预测早期非小细胞肺癌术后复发风险的研究
  • 批准号:
    81901910
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
  • 批准号:
    10665380
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Leveraging Spatial Location for Single-Cell Molecular and Morphological Characterization
利用空间定位进行单细胞分子和形态学表征
  • 批准号:
    10534272
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了