Kinetic-theoretic studies of the effect of sharp edges of the boundary in low-pressure gases
低压气体边界锐边效应的动力学理论研究
基本信息
- 批准号:10650171
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Study of a rarefied gas flow induced around edges of a uniformly cooled or heated plate :In our previous paper, we showed, by means of a numerical analysis using the direct simulation Monte Carlo method, that a fairly strong gas flow is induced around the edges of a uniformly cooled or heated plate placed in a rarefied gas. In the present study, in order to obtain the result with higher reliability, we investigated the flow by an accurate finite-difference analysis of a kinetic equation. As a result, the behavior of the gas was clarified comprehensively. In particular, it was confirmed that the flow has a stronger effect than the thermal creep flow and the flow induced by the thermal stress in the near continuum case.2. Study of a rarefied gas flow caused by a discontinuous wall temperature :We have investigated a rarefied gas flow induced in a container when the temperature of the wall of the container has a discontinuous distribution. The flow was obtained accurately for a wide ra … More nge of the degree of gas rarefaction by applying the finite-difference method developed in 1. We showed that, as the continuum limit is approached, though the region with an appreciable flow shrinks to the discontinuity line of the wall temperature, the maximum speed of the flow tends to approach a finite value. In addition, we have clarified the propagation of singularities, caused by the singularities in the boundary data, mathematically on the basis of a simple transport equation that possesses the feature of the equations in kinetic theory of gases.3. Studies of some other fundamental problems :Paying attention to another aspect of a well-known flow induced by a temperature field (thermal transpiration), we studied the control of the flow in a pipe (e. g., causing a one-way flow) by devising the temperature distribution as well as the configuration of the pipe. We have also investigated the fundamental features of the continuum limit for gas mixtures, the understanding of which facilitates the extension of the analyses of 1 and 2 to the case of the mixtures. Less
1。研究均匀冷却或加热板的边缘稀疏的研究:在我们的上一篇论文中,通过使用直接模拟蒙特卡洛方法显示SIS,即在均匀冷却或加热放置的边缘周围诱导相当强的气流在本研究中,稀有气体通过对气体的行为进行了精确的差异分析,以全面阐明该流量。在接近连续的情况下。2。通过应用1在1中开发的有限差异方法的气体罕见程度。我们表明,连续限制已接近,尽管该区域具有明显的溜冰场,距离壁温度的最大速度是最大的速度流动倾向于接近有限的价值,此外,奇异性的传播,边界数据中的奇异性是气体动力学理论中方程的特征。3通过设计温度分布以及管道的配置,由管道中的温度场引起的众所周知的流动(例如,导致一周的流动)。混合剂的情况少。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Aoki: "Numerical analysis of a rarefied gas flow induced near the edges of a uniformly cooled or heated plate"Book of Abstract, 4th International Congress on Industrial and Applied Mathematics (ICIAM99, Edinburgh, 1999). 155
K. Aoki:“均匀冷却或加热板边缘附近引起的稀薄气流的数值分析”摘要书,第四届国际工业与应用数学大会(ICIAM99,爱丁堡,1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Aoki: "Numerical analysis of a rarefied gas flow induced near the edges of a uniformly cooled or heated plate"Book of Abstract, the Fourth International Congress on Industrial and Applied Mathematics. 155 (1999)
青木一夫:“均匀冷却或加热板边缘附近引起的稀薄气流的数值分析”摘要书,第四届国际工业与应用数学大会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Aoki: "A rarefied gas flow caused by a discontinuous wall temperature"Research Report, Section of Dynamics in Aeronautics and Astronautics Dept. of Aeronautics and Astronautics, Kyoto University. (1999)
青木和夫:“由不连续壁温引起的稀薄气流”研究报告,京都大学航空航天系航空航天动力学部分。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Takata: "Two-surface problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory"Physics of Fluids. Vol.11, No.9. 2743-2756 (1999)
Shigeru Takata:“根据动力学理论,蒸汽和不可凝气体多组分混合物在连续介质极限中的两个表面问题”流体物理学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Aoki: "A rarefied gas flow caused by a discontinuous wall temperature"Research Report, Section of Dynamics in Aeronautics and Astronautics, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University. 2000
K.青木:“由不连续壁温引起的稀薄气流”研究报告,京都大学工学研究科航空航天系航空航天动力学部。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AOKI Kazuo其他文献
AOKI Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AOKI Kazuo', 18)}}的其他基金
Drying and dehydration in swelling materials
溶胀材料的干燥和脱水
- 批准号:
21560206 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discontinuous boundary conditions for the Boltzmann equation And generalization of slip boundary conditions
玻尔兹曼方程的不连续边界条件和滑移边界条件的推广
- 批准号:
21656026 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development and evaluation of a foot grip strength measurement tool for prediction of fall accident risk
用于预测跌倒事故风险的足部握力测量工具的开发和评估
- 批准号:
20570231 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prevalence of H. pylori Infection and Chronic Atrophic Gastritis in the Dominican Children
多米尼加儿童幽门螺杆菌感染和慢性萎缩性胃炎的患病率
- 批准号:
20590606 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical and physical study of micro- and nano-scale gas flows on the basis of the Boltzmann equation
基于玻尔兹曼方程的微纳尺度气体流动的数学和物理研究
- 批准号:
20360046 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Freezing in Colloidal Suspension and the Control of Fine Particles by Alternating Electric Field
胶体悬浮液的冻结及交变电场对细颗粒的控制
- 批准号:
19560198 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Epidemiological Study on the Effect of Helicobacter Pylori Infection on Chronic Atrophic Gastritis in Different Ethnic Groups
不同民族幽门螺杆菌感染对慢性萎缩性胃炎影响的流行病学研究
- 批准号:
18406022 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Effects of Electric Double Layer on Freezing and dehydration in Fine Packed Beds with Liquid Content
双电层对含液细填充床冷冻脱水的影响
- 批准号:
17560177 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect on life style to Helicobacter pylori infection and/or chronic atrophic gastritis in the tropics
热带地区生活方式对幽门螺杆菌感染和/或慢性萎缩性胃炎的影响
- 批准号:
17590518 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of Microwave Heating in Rectangular Waveguide and Rectangular Cavity
矩形波导和矩形腔内微波加热的控制
- 批准号:
15560176 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
相对论Boltzmann方程的牛顿极限与流体动力学极限
- 批准号:12361045
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
- 批准号:12301284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无角度截断Boltzmann方程弱解的正则性及流体动力学极限研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无角截断Boltzmann方程解的正则性研究
- 批准号:12101012
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
- 批准号:
2887026 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Theory and Simulation of Local Electroneutrality and Ion Atmospheres in Biological Systems
生物系统中局域电中性和离子气氛的理论与模拟
- 批准号:
10736494 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Physics Informed Neural Networks to solve the Boltzmann Transport Equation (Ref: 4741)
物理信息神经网络求解玻尔兹曼传输方程(参考:4741)
- 批准号:
2879436 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Application of Boltzmann Transport Equation solutions to nuclear reactor physics and radiotherapy applications
玻尔兹曼输运方程解在核反应堆物理和放射治疗应用中的应用
- 批准号:
RGPIN-2021-03899 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
分子気体力学にもとづく流体構造連成問題の数学解析
基于分子气体力学的流固耦合问题数学分析
- 批准号:
22K13938 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists