Representation theory of the quantized enveloping algebras and the quantized enveloping superalgebras
量化包络代数和量化包络超代数的表示论
基本信息
- 批准号:10640022
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Yamane gave a Serre type theorem for the affine Lie superalgebras G, namely he gave a presentation of G by the Chevalley generators and defining relations satisfied by them. He also gave a similar result for the affine quantised superalgebras U_qG. He alos gave a a presentation of U_qG of type A(M|N)^<(1)> by the Drinfeld generators and defining relations satisfied by them, and defining relations satisfied by them. Dnlike the non-super case, the defining relations are very complicate. However, by comparing the defining relations of G with the ones of U_qG, we can find out the coincidense of the dimensions of the weight sapaces of the Verma modules of G with the ones of U_qG. Let R = C[s^<±1>,t^<±1>] be the two variable Laurent polynomials ring. Let D be the universal central extention of sl(2|2). Then dim D/sl(2|2) = 2., and D(R) = D 【cross product】 R 【symmetry】 Ω_R/dR is the universal central extention of sl(2|2) 【cross product】 R. He gave a presentation of D(R) by the finite Chevalle … More y generators and finite definig relations, and also did the same thing for the D type affine Lie superalgebra D^<(1)> = D 【cross product】 C[t^<±1>] + Cc. It is easy to describe the kernel of the natural map D(R)→ sl(2|2)(R) by using the generators. By the fact, we can also give a presentation of sl(2|2)(R) by the finite Chevalley generators and infinite definig relations.Yamane gave a Serre type theorem for the affine Lie superalgebras G, namely he gave a presentation of G by the Chevalley generators and defining relations satisfied by them. He also gave a similar result for the affine quantised superalgebras U_qG. He alos gave a a presentation of U_qG of type A(M|N)^<(1)> by the Drinfeld generators and defining relations satisfied by them. Unlike the non-super case, the defining relations are very complicate. However, by comparing the defining relations of G with the ones of U_qG, we can find out the coincidence of the dimensions of the weight sapaces of the Verma modules of G with the ones of U_qG. Let R = C[s^<±1>,t^<±1>] be the two variable Laurent polynomial ring. Let D be the universal central extension of sl(2|2). Then dim D|sl(2|2) = 2., and D(R) = D 【cross product】 R 【symmetry】 Ω_R/dR is the universal central extension of sl(2|2) 【cross product】 R. He gave a presentation of D(R) by the finite Chevalley generators and finite defining relations, and also did the same thing for the D type affine Lie superalgebra D^<(1)> = D 【cross product】 C[t^<±1>] + Cc. It is easy to describe the kernel of the natural map D(R) → sl(2|2)(R) by using the generators. By the fact, we can also give a presentation of sl(2|2)(R) by the finite Chevalley generators and infinite defining relations.Nagatomo has developed the representation theory of vertex operator algebras, and has applied it to problems arising from conformal field theory. One of the important results is the classification of simple modules for the charge conjugation orbifold model, which opened a way to study conformal field theories with central charge more than or equal to one. On the other hand he applied the systematic study for correlation functions to a construction of modular forms and quasi-modular forms, which attracts much attention of those who work on the theory of modular forms. Less
Yamane给出了一个静脉内的Superalgebras G的塞雷类型理论,即,他由Chevalley Generators介绍G,并定义了他们满足的关系。他还为仿射量化的超级U_QG给出了类似的结果。 ALOS由Drinfeld Generators介绍了A(m | n)^<(1)>的U_QG,并定义了他们所满足的关系,并定义了他们所满足的关系。 DNICE否则,定义关系非常复杂。但是,通过将G与U_QG的定义关系进行比较,我们可以找出G的Verma模块重量间距的巧合与U_QG的u_qg。令r = c [s^<±1>,t^<±1>]为两个可变的laurent多项式环。令D为SL(2 | 2)的通用中心范围。然后dim d/sl(2 | 2)= 2,而d(r)= d [跨产品] r [对称]ω_r/dr是sl(2 | 2)[跨产品]的通用中心范围。 C [T^<±1>] + CC。使用发电机可以很容易地描述自然图D(R)→SL(2 | 2)(R)的内核。事实上,我们还可以通过有限的Chevalley Generator和无限的定义关系对SL(2 | 2)(r)的介绍。Yamane给出了一个serre类型的理论,以介绍了offine lie superalgebras g,即他给出了Chevalley Generators的G介绍G,并确定了他们满足的关系。他还为仿射量化的超级U_QG给出了类似的结果。 Alos由Drinfeld Generators介绍了A(M | N)^<(1)>的U_QG,并介绍了它们所满足的定义关系。与非少案件不同,定义关系非常复杂。但是,通过将G与U_QG的定义关系进行比较,我们可以找出G的Verma模块的重量间距的巧合与U_QG的u_qg。令r = c [s^<±1>,t^<±1>]为两个可变的laurent多项式环。令D为SL(2 | 2)的通用中心扩展。然后dim d | sl(2 | 2)= 2,而d(r)=d【跨产品] r [对称]ω_r/dr是Sl(2 | 2)[跨产品] R的通用中心扩展。 C [T^<±1>] + CC。使用发电机可以很容易地描述自然图D(R)→SL(2 | 2)(R)的内核。事实上,我们还可以通过有限的Chevalley发电机和无限定义关系对SL(2 | 2)(r)的介绍。NAGATOMO开发了Vertex Operator代数的表示理论,并将其应用于由整形型领域理论引起的问题。重要的结果之一是对电荷共轭Orbifold模型的简单模块的分类,该模块开辟了一种研究中心电荷超过或等于一个的保形场理论的方法。另一方面,他将系统研究应用于模块化形式和准模块化形式的构造,这吸引了那些从事模块化形式理论的人的关注。较少的
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takao Watanabe: "On an analog of Hermite's constant"J.Lie Theory. (to appear).
Takao Watanabe:“关于厄米常数的类比”J.Lie 理论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Yamane: "On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras"Publ. RIMS Kyoto UNIV.. 35 (3). 321-390 (1999)
H. Yamane:“关于仿射李超代数和仿射量子化泛包络超代数的关系的定义”Publ。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
村上 斉: "The colored Jones polynomials and the simplicial volume of a knoe"Acta Mathematica. 186. 85-104 (2001)
Hitoshi Murakami:“彩色琼斯多项式和节点的单纯体积”Acta Mathematica 186. 85-104 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Matsuo: "On axioms for vertex algebra and the locality of quantum fields" Memoir Mathematical Society of Japan. (to appear).
A.Matsuo:“关于顶点代数公理和量子场局部性”日本数学会回忆录。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
C.Dong: "Classification of irreducible modules for the vertex operator algebra M(1)^+" Journal of Algebra. (to appear).
C.Dong:“顶点算子代数 M(1)^ 的不可约模分类” 代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMANE Hiroyuki其他文献
YAMANE Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMANE Hiroyuki', 18)}}的其他基金
Weyl groupoids, generalized quantum groups, and related graph theory
韦尔群群、广义量子群和相关图论
- 批准号:
19K03420 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative characterization of charge transport properties in organic semiconductors by precise intermolecular band-dispersion measurement
通过精确的分子间带色散测量定量表征有机半导体中的电荷传输特性
- 批准号:
24685032 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
In situ characterization of organic electronic devices under operation
运行中有机电子器件的原位表征
- 批准号:
24656022 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of a universal representation theory of generalized quantum enveloping algebras with structures of Coxeter groupoids
具有 Coxeter 群形结构的广义量子包络代数的通用表示理论的发展
- 批准号:
22540020 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local electronic structure and charge transport dynamics in organic films and interfaces by means of inner-shell excitation
通过内壳层激发的有机薄膜和界面中的局域电子结构和电荷传输动力学
- 批准号:
21750030 - 财政年份:2009
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Generalized quantum groups, including super and elliptic ones, and Weyl groupoids
广义量子群,包括超群和椭圆群,以及韦尔群群
- 批准号:
19540027 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elliptic Lie (super)algebras, affine Lie superalgebras and their quauntum groupsand their representation theories
椭圆李(超)代数、仿射李超代数及其量子群及其表示理论
- 批准号:
16540026 - 财政年份:2004
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
简化版SM4分组密码在变分量子算法攻击下的安全性
- 批准号:62372048
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线性方程组量子求解算法(HHL算法)的精确受控旋转研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
线性方程组量子求解算法(HHL算法)的精确受控旋转研究
- 批准号:62273154
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
非富勒烯修饰的黑磷量子点作为第三组分应用于非富勒烯有机太阳能电池的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非富勒烯修饰的黑磷量子点作为第三组分应用于非富勒烯有机太阳能电池的研究
- 批准号:52103219
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
- 批准号:
23K12955 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantum groups and K-theory
量子群和 K 理论
- 批准号:
22KJ0618 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Harmonic analysis of q-Laplace operators on quantum groups
量子群上q-拉普拉斯算子的调和分析
- 批准号:
23KJ1690 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows