Singularity theoretical research on Partial Differential Equations and Differential Geometry
偏微分方程与微分几何的奇异性理论研究
基本信息
- 批准号:10304003
- 负责人:
- 金额:$ 12.12万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we established the fundamental results on the propagation of singualnties (or shock waves) for weak solutions of partial differential equations and the construction on new invariants in Differential Geometry as an application of Singularity theory. Those results could not be studied by using the main frame of 20th century's Mathematics. Those results contain the classification of singularities for solutions of the Eikonal equation which appears in the theory of Ocean acoustics, construction of the generalized notion of weak solutions which is a generalization of both of the entropy and the viscosity solutions, the unified treatment on four vertices theorems of curves, the method to construct many mean curvature constant surfaces, construction of the symplectic framework for multiple-plane garvitation lensing and the study of sinuglarities of hyperbolic Gauss maps and lightcone Gauss maps. In the final year, we have given a classification of singular plane curves by symplectic diffeomorphisms and discovered that the difference from the classification by ordinary diffeomorphisms is a symplectic invariant. We have also found relations between special space curves and ruled surfaces. Moreover, we have studied line congruences and have given a characterization of normal line congruences by the notion of Lagrangian congruences.
在该研究项目中,我们建立了有关偏微分方程弱解的单态(或冲击波)传播的基本结果,以及在差异几何形状中的新不变性构建作为奇异理论的应用。无法使用20世纪的数学主框架来研究这些结果。 Those results contain the classification of singularities for solutions of the Eikonal equation which appears in the theory of Ocean acoustics, construction of the generalized notion of weak solutions which is a generalization of both of the entropy and the viscosity solutions, the unified treatment on four vertices theorems of curves, the method to construct many mean curvature constant surfaces, construction of the symplectic framework for multiple-plane garvitation lensing and the study of双曲线高斯地图和灯光高斯图的辛努利度。在最后一年,我们通过符号差异分类对单数平面曲线进行了分类,并发现普通差异性分类的差异是一种符合性不变性。我们还发现了特殊空间曲线与统治表面之间的关系。此外,我们研究了线的一致性,并通过拉格朗日一致性的概念给出了正常线一致性的特征。
项目成果
期刊论文数量(49)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Ozawa: "Linearizations of ordinary differential equations by area preserving maps"Nagoya Math. J.. 156. 109-122 (1999)
T. Ozawa:“通过面积保留映射对常微分方程进行线性化”名古屋数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ono: "On Arnold's conjecture for symplectic fixed points" Banach Center Publications. 45. 13-24 (1998)
K.Ono:“论阿诺德对辛不动点的猜想”巴拿赫中心出版物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Tsuji: "Construction of singularities for nonlnear wave equations" Proceedings of the Eighth International Colloquium on Diff-Equ.423-430 (1998)
M.Tsuji:“非线性波动方程奇点的构造”第八届国际 Diff-Equ.423-430 座谈会论文集(1998 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.-H.Giga: "Generalized motion by nonlocal curvature in the plane"Arch. Rational Mech. Anal.. 159. 295-333 (2001)
M.-H.Giga:“平面内非局部曲率的广义运动”Arch。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. IZUMIYA: "A time-like surface in Minkowski 3-space which contains light-like lines"Journal of Geometry. 64. 95-101 (1999)
S. IZUMIYA:“Minkowski 3 空间中的类时间表面,其中包含类光线”《几何杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IZUMIYA Shyuichi其他文献
IZUMIYA Shyuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IZUMIYA Shyuichi', 18)}}的其他基金
Event horizons of higher dimensional space-time and the theory of Lagrange/Legendrian singularities
高维时空事件视界和拉格朗日/勒让德奇点理论
- 批准号:
24654008 - 财政年份:2012
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A research on the geometric singularities of non-linear phenomena
非线性现象的几何奇点研究
- 批准号:
22340011 - 财政年份:2010
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on the singularities and the event horizon in the brane world model
膜世界模型中的奇点和视界研究
- 批准号:
21654007 - 财政年份:2009
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Differential Geometry and Partial Differential Equations as an application of Singularity theory
微分几何和偏微分方程作为奇点理论的应用
- 批准号:
18340013 - 财政年份:2006
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on several geometry from the view point of sinuglarity theory
奇点理论视角下的几种几何学研究
- 批准号:
15204002 - 财政年份:2003
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry and Analysis of non-linear Partial Differentail Equations
非线性偏微分方程的几何与分析
- 批准号:
08454011 - 财政年份:1996
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
- 批准号:
10226824 - 财政年份:2019
- 资助金额:
$ 12.12万 - 项目类别:
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
- 批准号:
10395559 - 财政年份:2019
- 资助金额:
$ 12.12万 - 项目类别:
Cosmological observations in the inhomogeneous Universe and the evolution of a local inhomo geneity
非均匀宇宙中的宇宙学观测和局部非同质基因的演化
- 批准号:
10640266 - 财政年份:1998
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)