Study of higher dimensional complex dynamical systems
高维复杂动力系统的研究
基本信息
- 批准号:09640232
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nishimura and Yasuda studied dynamical systems of birational maps of two-dimensional complex projective space P^2. In the study of dynamics of rational maps, it appear some phen, omena which do not appeal in the study of dynamics of holomorphic maps, and these phenomena cause some problems, that is, tlie problem of distribution of inderterminate points and the problem of degree lowering of homogeneous polynomial representation. In order to understand these phenomena, we investigated in detail the family of birational polynomial quadratic maps psi and their inverse maps psi. In the case of maps psi, we expressed the mechanism of the way how the degree lowering occurs and we described concretely the distribution of inderminate points. We have successfully picked out the algebraic curves C_n of common divisers which appears when the degree lowering occurs at the n-times iteration psi^n. We also proved that the set of all indeterminate points of the iterated maps psi^n coincides with the set of intersection points of all pairs of the algebraic curves C_m and C_n.Though our research is of purely mathrmatical, Nishimura implemented a computer program of two dimensional complex dynamical systems which help the pure mathematical research. The computation of iteration by using the homogeneous coordinate system of projective space was tried.Ueda studied the complex dynamics on the n-dimensional projective space P^n. Specifically, the case of critically finite maps, that is the case when the orbits of the branch points constitute an algebraic sets, were studied deeply. In this case, he proved that the Fatou maps are constant maps, the Julia set coincides the whole space P^n and that the set of repelling periodic points is dense in the whole space P^n Furthermore, he classified the quadratic maps of P^2 and constructed some examples of critically finite maps of P^2.
Nishimura和Yasuda研究了二维复合物射击空间P^2的生育图的动力学系统。在理性图动力学的研究中,它似乎是某种现象,在研究全体形态图动力学的研究中没有吸引人,而这些现象引起了一些问题,即,降低了非终端点的分布问题以及降低同质多项式表示的程度问题。为了理解这些现象,我们详细研究了Birational多项式二次地图PSI及其倒数映射PSI的家族。在地图psi的情况下,我们表达了降低程度降低方式的机制,并且我们巧妙地描述了倒线点的分布。我们已经成功挑选了公共分裂器的代数曲线C_N,当降低度降低时出现在n-times Iteration psi^n时。我们还证明了迭代地图的所有不确定点的集合psi^n与代数曲线和C_N对所有对的一组相交点相吻合。尝试了使用投影空间的均匀坐标系来计算迭代的计算。Ueda研究了N维射击空间p^n上的复杂动力学。具体而言,深入研究了分支点的轨道构成代数集时,严重有限地图的情况是这种情况。在这种情况下,他证明了fatou地图是恒定的地图,朱莉娅集合整个空间p^n,并且在整个空间p^n中,一组排斥周期点的浓度是密集的,他对P^2的二次图进行了分类,并构建了一些杰出的示例P^2的有限限制映射。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetsuo Ueda: "Critically finite maps on projective spaces" The Journal of Geometric Analysis. vol 8 未定. (1999)
Tetsuo Ueda:“射影空间上的临界有限映射”《几何分析杂志》第 8 卷 TBA(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsuo Ueda: "Critically finite maps on projective spaces" The Journal of Geometric Analysis. vol.8(to appear). (1999)
Tetsuo Ueda:“射影空间上的临界有限映射”几何分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuo Ueda: "Critically fimite maps on projective spaces" The Journal of Geometric Analysys. Vol.8(未定). (1999)
Tatsuo Ueda:“射影空间上的临界有限映射”《几何分析杂志》第 8 卷(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIMURA Yasuichiro其他文献
NISHIMURA Yasuichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于自适应迭代模式的终生学习研究
- 批准号:62366055
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抛物方程控制问题快速线性迭代法的研究
- 批准号:12301480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于迭代降维的高光谱图像解混模型和算法研究
- 批准号:12371517
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
套索肽迭代后修饰酶的挖掘与催化机制
- 批准号:22377046
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
智能互联产品动态质量过程控制与迭代改进方法研究
- 批准号:72371183
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
相似海外基金
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant
Creative Education's Blind Spot: Using board-game design to teach iteration
创意教育的盲点:利用棋盘游戏设计来教授迭代
- 批准号:
2855310 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Studentship
Development of a novel FDTD method using an iteration technique and its application to electromagnetic wave devices
使用迭代技术开发新型 FDTD 方法及其在电磁波器件中的应用
- 批准号:
23K03962 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modelling Design Iteration in Hard-Technology Startups using Enterprise Social Networking Messages
使用企业社交网络消息对硬技术初创公司的设计迭代进行建模
- 批准号:
568938-2022 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Post-Acute Complications of COVID-19: An International Cohort Study (PACS) Note that in a previous iteration, this proposal was titled PACMAN as indicated in some of the Letters of Support
COVID-19 的急性后并发症:国际队列研究 (PACS) 请注意,在之前的迭代中,该提案的标题为 PACMAN,如一些支持信中所示
- 批准号:
448931 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Operating Grants