Theoretical and Numerical Research of Optimal Control and Inverse Problems for Nonlinear Elliptic and Hyperbolic Distributed Parameter Systems

非线性椭圆和双曲分布参数系统最优控制与反问题的理论与数值研究

基本信息

项目摘要

According to the research plan, we studied the existence and uniqueness of solutions for distributed parameter systems described by nonlinear second order evolution equations in the framework of variational method due to Lions. For the nonlinear systems we studied optimal control problems, and established necessary optimality conditions in terms of transposed systems for various types of observations. The conditions are new ones for nonlinear systems. The results were applied to practical systems such as sine-Gordon equation, Klein-Gordon equation, nonlinear damped beam equations and others. Next, for coupled sine-Gordon equations, we studied the numerical analysis of approximate solutions based on finite element method. As a result we observed the chaotic behavior of numerical solutions which depends heavily on physical parameters appearing in the equations. Further the head investigator studied the spatially-varying parameter identifiability in linear distributed parameter systems of parabolic and hyperbolic types by interior domain observations. This is a kind of inverse problems and he established several necessary and sufficient conditions for the identifiability. Also he solved the findpath problem of moving objects by means of Liapounof functions with the help of Drs. Ha and Vanualailai. The results of other investigatos are as follows. The investigator Nambu established the characterization of the domain of fractional powers of a class of elliptic differential operators with feedback boundary conditions. The investigator Tabata, by using the idea of optimality conditions, proposed and investigated the model equations for geographic spread of an epidemic. The investigator Naito studied nonlinear elliptic distributed parameter systems and established new conditions for the existence and nonexistence of positive radial solutions. The results of all investigators were published in the journals given below.
根据研究计划,我们研究了由于狮子而导致的变异方法框架中非线性二阶进化方程所描述的分布式参数系统的解决方案的存在和唯一性。对于非线性系统,我们研究了最佳控制问题,并根据用于各种观察结果的转置系统建立了必要的最佳条件。这些条件是非线性系统的新条件。结果应用于实用系统,例如正弦 - 戈登方程,klein-gordon方程,非线性阻尼束方程等。接下来,对于耦合的正弦 - 戈登方程,我们研究了基于有限元方法的近似解决方案的数值分析。结果,我们观察到了数值解的混乱行为,这在很大程度上取决于方程中出现的物理参数。此外,负责人研究员通过内部域观测研究了抛物线和双曲线类型的线性分布式参数系统中的空间变化参数可识别性。这是一种反问题,他为可识别性建立了几个必要和足够的条件。他还通过DRS的帮助来解决通过LiaPounof功能移动对象的发现路径问题。 ha and vanualailai。其他研究结果如下。研究人员Nambu确定了具有反馈边界条件的一类椭圆形差分运算符的分数幂的域的表征。研究者塔巴塔(Tabata)通过使用最佳条件的概念提出并研究了流行病的地理扩散模型方程。研究者Naito研究了非线性椭圆分布的参数系统,并为阳性径向溶液的存在和不存在的新条件建立了新的条件。所有研究人员的结果发表在下面给出的期刊上。

项目成果

期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Nakagiri: "Regional identifiability of spatially-varying parameters in distributed parameter systems of parabolic type" Proceedings of the 11th IFAC Symposium on System Identification. Vol.1. 351-356 (1997)
S.Nakagiri:“抛物型分布参数系统中空间变化参数的区域可辨识性”第 11 届 IFAC 系统辨识研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Tabata: "The spectrum of the linear transport operator with a potential term under the spatial oeriodicity condition" Rendiconti dell Sem. Mat. Univ. Padova. 97-1. 1-23 (1997)
M.Tabata:“空间偶数条件下具有潜在项的线性传输算子的谱”Rendiconti dell Sem。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Ha: "Optimal control of a linear damped second order evolution equation system in Hilber space" Mem.Grad.School Sci,& Technol.,Kobe Univ.15-A. 127-145 (1997)
J.Ha:“希尔伯空间中线性阻尼二阶演化方程组的最优控制”Mem.Grad.School Sci,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Vanualailai: "A solution to the two-dimensional findpath problem" Dynamics and Stability of Systems. 13. 373-401 (1998)
J.Vanualailai:“二维查找路径问题的解决方案”系统动力学和稳定性。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Naito: "Entire solutions of the inequality div (A (|Du|) Du) >= f (u)" Math.Z.225. 167-175 (1997)
Y.Naito:“不等式 div (A (|Du|) Du) >= f (u) 的完整解”Math.Z.225。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 31 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往

NAKAGIRI Shin-ichi的其他基金

Research on inverse problems and boundary control problems for partial differential equations having transport and nonlocal terms
具有输运项和非局部项的偏微分方程的反问题和边界控制问题研究
  • 批准号:
    23540240
    23540240
  • 财政年份:
    2011
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
RESEARCH OF OPTIMAL CONTROL AND PARAMETER IDENTIFICATION PROBLEMS FOR NONLINEAR EVOLUTION EQUATIONS
非线性演化方程最优控制及参数辨识问题的研究
  • 批准号:
    19540216
    19540216
  • 财政年份:
    2007
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Research of Optimal Control and Inverse Problems for Nonlinear Evolution Equations
非线性演化方程最优控制与反问题研究
  • 批准号:
    16540194
    16540194
  • 财政年份:
    2004
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Theoretical and Numerical Research of Control Theory and Identification Problems for nonlinear parabolic and Hyperbolic Distributed parameter System
非线性抛物型和双曲分布参数系统控制理论与辨识问题的理论与数值研究
  • 批准号:
    11640201
    11640201
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

逆散射理论中传输特征值问题的虚拟元方法研究
  • 批准号:
    12301532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结合资源受限和机会约束的并行机调度问题及其逆优化研究
  • 批准号:
    72371187
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
传导边界条件下逆声波散射问题的唯一性研究
  • 批准号:
    12301542
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光波经多类粒子集合散射后的统计光学特性及其逆问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向电磁场逆问题的高维多目标电磁学优化算法研究
  • 批准号:
    62201021
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
    Grant-in-Aid for Challenging Research (Pioneering)
The inverse backscattering problem and the inverse fixed angle scattering problem
逆后向散射问题和逆固定角散射问题
  • 批准号:
    2307800
    2307800
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Standard Grant
    Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Standard Grant
    Standard Grant
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Combinatorics of neural activity for inferring the structure of neural networks
用于推断神经网络结构的神经活动组合学
  • 批准号:
    22K03545
    22K03545
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)