THE EXPLICIT EXPRESSION OF C FUNCTION ON SEMISIMPLE LIE GROUPS AND ITS APPLICATION

半单李群上C函数的显式表达及其应用

基本信息

项目摘要

1. The Harish-Chandra C-function plays an essential role in harmonic analysis on semisimple Lie groups, because it closely relates to the Plancherel measure, the reducibility of the principal series representations and gives many information for the analysis. After a time, many peoples studied the Harish-Chandra C-function. However, even now, the explicit expressions of the Harish-Chandra C-functions are not known except for a few semisimple Lie groups and special cases.In this research we succeeded to give the explicit formulae of the Harish-Chandra C-functions for Spin(m, 1) and SU(n, 1). By the product formula for the Harish-Chandra C-function, the problem of computing the Harish-Chandra C-functions of semisimple Lie groups of general rank is reduced to the real rank one case. For this reason, it is crucial to compute the Harish-Chandra C-function for Spin(n, 1) and SU(n, 1). The reason for restricting our attention to the cases Spin(n, 1) and SU(n, 1) is that no multiple irreducible unitary representations of M occur in any irreducible unitary representation of K.2. In Euclidean space, various forms of the uncertainty principle between a function and its Fourier transform are known. The Hardy theorem asserts that if a measurable function f on R satisfies |f(x)| <less than or equal> C exp{-ax^2} and |f(y)| <less than or equal> C exp{-by^2} then f = O(a.e.) whenever ab> 1/4. This result is generalized to some semisimple Lie groups by A.Sitaram and M.Sundari, and M.Sunclari, M.0. Cowling and J.F.Price We get an analogue of the Hardy theorem for the Cartan motion group and also an L^p version of the Hardy theorem for the motion group.
1。harish-chandra c函数在半圣像谎言组的谐波分析中起着至关重要的作用,因为它与plancherel量度密切相关,是主序列表示的降低性,并为分析提供了许多信息。一段时间后,许多人研究了Harish-Chandra C功能。然而,即使到现在,除了几个半密布的谎言组和特殊案例外,尚不清楚哈里什 - chandra c函数的明确表达。在这项研究中,我们成功地为旋转(m,1)和su(n,1)提供了harish-chandra c命令的明确配方。通过Harish-Chandra C功能的产品公式,将一般等级的半密布谎言群体的Harish-Chandra C函数降低到了实际等级的一个情况。因此,对于自旋(n,1)和su(n,1)计算Harish-Chandra c功能至关重要。限制我们注意案例的原因(n,1)和su(n,1)的原因是,在K.2的任何不可还原的统一表示中,M的多个不可还原统一表示。在欧几里得空间中,已知函数与其傅立叶变换之间的各种形式的不确定性原理。 Hardy定理断言,如果R上的可测量函数f满足| f(x)| <小于或等于> c exp {-ax^2}和| f(y)| <小于或等于> c exp {-by^2},然后每当ab> 1/4时f = o(a.e。)。 A.Sitaram和M.Sundari和M.Sunclari,M.0将此结果推广到某些半神经谎言组。 COWLING和J.F. PRICE我们获得了Cartan运动组Hardy定理的类似物,也获得了运动组Hardy Therorem的L^P版本。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Furushima: "Non-projective compactifications of C^3(III):A remark on indices" Hiroshima Math.J.掲載予定. (1999)
M.Furushima:“C^3(III) 的非投影紧化:关于指数的评论”Hiroshima Math.J(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shibata: "Two-Parameter nonlinear Sturm-Liouville problems" Proc.Edinburgh Math.Soc.bf41. 225-245 (1998)
T.Shibata:“双参数非线性 Sturm-Liouville 问题”Proc.Edinburgh Math.Soc.bf41。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shibata: "Asymptotic profiles of variational eigenvalues of two parameter nonlinear Sturm-Liouville problems" Mathematical Methods in Applied Sciences. 21. 1619-1635 (1998)
T.Shibata:“二参数非线性 Sturm-Liouville 问题的变分特征值的渐近轮廓”应用科学中的数学方法。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Furushima: "Non-projective compactifications of C^3 (II)" Kyushu J.Math.(近刊). (1998)
M.Furushima:“C^3 (II) 的非投影紧化”Kyushu J.Math(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shibata: "Asymptotic profiles of variational eigen-values of two parmeter nonlinear Sturm-Liouville problems" Mathematical Methods in Applied Sciences. 21. 1619-1635 (1998)
T.Shibata:“两个参数非线性 Sturm-Liouville 问题的变分特征值的渐近轮廓”应用科学中的数学方法。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 35 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往

EGUCHI Masaaki的其他基金

Representation Theory of Elliptic Quantum Groups and the Elliptic q-KZB Equation
椭圆量子群的表示论和椭圆q-KZB方程
  • 批准号:
    14540028
    14540028
  • 财政年份:
    2002
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似海外基金

ヤンバクスター方程式と量子代数
杨-巴克斯特方程和量子代数
  • 批准号:
    06740002
    06740002
  • 财政年份:
    1994
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
    Grant-in-Aid for Encouragement of Young Scientists (A)
Harmonic analysis on solvable Lie groups and discrete subgroups
可解李群和离散子群的调和分析
  • 批准号:
    05640237
    05640237
  • 财政年份:
    1993
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
    Grant-in-Aid for General Scientific Research (C)