Calculus of Variation and Geometric Structures on Manifolds
流形上的变分和几何结构微积分
基本信息
- 批准号:09640139
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator, Yoe Itokawa, in a joint research project with Katsuhiro Shiohama, has shown that complete minimal varieties in complete noncompact manifolds of positive sectional curvature necessarily have unbounded images. The head investigator has obtained some partial results concerning the case where the ambient spaces have only nonnegative curvature, but he is still undecided whether to publish the latter results or wait for further information. In another work, this time with Ryoichi Kobayashi, the head investigator has classified the <planck's constant>-1 -dimensional homology groups of manifolds of nonnegatively Ricci curvature under some relatively weak conditions on the growth rate of their cross-sectional size. The last results were described in the paper"Minimizing currents in open manifolds and <planck's constant>-1 homology of nonnegatively Ricci curved mThe investigator Masaru Nishihara has continued his investigation on the extendability of weakly continuous polynomials on a comples locally convex space E to its bidual space E". He has published his results in the paper "On extensions of holomorphic functions in infinite dimensional spaces" in Proceedings of the Sixth International Colloquium on Complex Analysis.The investigator Sinya Nishibata has studied systems of coupled hyperbokic and elliptic P.D.E.'s. He was able to prove that the existence of entropy function is equivalent to the simultaneous diagonability of the system and that, under this condition, classical techniques can be used to establish the short-term existence of solutions. In addition, he has also shown that under stability assumptions, long term solutions also exist and when t tends to*, they converge to equilibrium states.
首席研究员Yoe Itokawa在与Katsuhiro Shiohama的联合研究项目中,表明,正面截面曲率的完全非恰当歧管中的完全最小品种必然具有无绑定的图像。有关环境空间仅具有非负曲率的情况,主管研究者已经获得了一些部分结果,但是他仍然不确定是发布后者结果还是等待进一步的信息。在另一项工作中,这次与Ryoichi Kobayashi一起,首席研究员将<Planck的常数> -1-二维同源性组归类为在某些相对较弱的条件下,在其横截面大小的生长速度下,非自止曲率的歧管曲率分类。最后的结果在本文中描述了“最小化开放流形中的电流,<普朗克的常数> -1非校友弯曲的同源性,研究人员Masaru Nishihara继续研究了他对局部在局部将弱连续的多种元素扩展的可扩展性,并在其双层空间e上局部凸出。他在第六次国际复杂分析座谈会会议录中发表了他的结果。他能够证明熵函数的存在等效于系统的对角线性,并且在这种情况下,经典技术可用于确定溶液的短期存在。此外,他还表明,在稳定性假设下,长期解决方案也存在,当t倾向于*时,它们会融合到平衡状态。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shuichi Kawashima and Shinya Nishibata: "Shock Waves for a model system of radiating gas" SIMA Journal of Mathematical Analysis. 発表予定.
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIMA 数学分析杂志 待出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima and Shinya Nishibata: "Shock waves for amodel system of radiating gas" SIAM Journal of Mathematical Analysis. 発表予定.
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIAM 数学分析杂志即将出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima, Yoshiko Niikuni, and Shinya Nishibata: "The initial vabne problem for hyperbolic-elliptic coupled system and applications to radiation hydrodynainics" Analysis of Systems of Conservation Laws. 発表予定.
Shuichi Kawashima、Yoshiko Niikuni 和 Shinya Nishibata:“双曲椭圆耦合系统的初始 vabne 问题及其在辐射流体动力学中的应用”,守恒定律系统分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima and Shinya Nishibata: "Shock Waves for a model system of radiating gas" SIAM Journal of Mathemtical Analysis. (To appear).
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIAM 数学分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoe Itokawa and Katsuhiro Shiohama: "The unboundedness of certain minimal submanifolds of positively curved riemannian spaces" Differential Geometry and Its Applications. (To appear).
Yoe Itokawa 和 Katsuhiro Shiohama:“正弯曲黎曼空间的某些最小子流形的无界性”微分几何及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOKAWA Yoe其他文献
ITOKAWA Yoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOKAWA Yoe', 18)}}的其他基金
Global Studies on Curvature and Geometric Structures of Riemannian Manifolds
黎曼流形曲率和几何结构的全局研究
- 批准号:
13640093 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Perverse sheaves and schobers
反常的滑轮和 schobers
- 批准号:
20H01794 - 财政年份:2020
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mean Curvature Flow and Minimal Varieties
平均曲率流量和最小品种
- 批准号:
1711293 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Boundedness of Fano varieties
Fano 簇的有界性
- 批准号:
16K17558 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On families of algebraic varieties admitting unipotent group actions from the viewpoint of Minimal Model Program
从最小模型程序的角度论承认单能群作用的代数簇族
- 批准号:
15K04805 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)