Calculus of Variation and Geometric Structures on Manifolds
流形上的变分和几何结构微积分
基本信息
- 批准号:09640139
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator, Yoe Itokawa, in a joint research project with Katsuhiro Shiohama, has shown that complete minimal varieties in complete noncompact manifolds of positive sectional curvature necessarily have unbounded images. The head investigator has obtained some partial results concerning the case where the ambient spaces have only nonnegative curvature, but he is still undecided whether to publish the latter results or wait for further information. In another work, this time with Ryoichi Kobayashi, the head investigator has classified the <planck's constant>-1 -dimensional homology groups of manifolds of nonnegatively Ricci curvature under some relatively weak conditions on the growth rate of their cross-sectional size. The last results were described in the paper"Minimizing currents in open manifolds and <planck's constant>-1 homology of nonnegatively Ricci curved mThe investigator Masaru Nishihara has continued his investigation on the extendability of weakly continuous polynomials on a comples locally convex space E to its bidual space E". He has published his results in the paper "On extensions of holomorphic functions in infinite dimensional spaces" in Proceedings of the Sixth International Colloquium on Complex Analysis.The investigator Sinya Nishibata has studied systems of coupled hyperbokic and elliptic P.D.E.'s. He was able to prove that the existence of entropy function is equivalent to the simultaneous diagonability of the system and that, under this condition, classical techniques can be used to establish the short-term existence of solutions. In addition, he has also shown that under stability assumptions, long term solutions also exist and when t tends to*, they converge to equilibrium states.
首席研究员 Yoe Itokawa 在与 Katsuhiro Shiohama 的联合研究项目中表明,正截面曲率的完全非紧流形中的完全最小簇必然具有无界图像。首席研究员已经获得了有关环境空间仅具有非负曲率的情况的部分结果,但他尚未决定是否发布后者结果或等待进一步的信息。在另一项工作中,这次是与 Ryoichi Kobayashi 合作,首席研究员在横截面尺寸增长率相对较弱的条件下对非负里奇曲率流形的<普朗克常数>-1 维同调群进行了分类。最后的结果在论文“Minimizing currents in open局面和<普朗克常数>-1非负里奇曲线m的同源性”中进行了描述。研究者Masaru Nishihara继续研究弱连续多项式在复局部凸空间E上的可延展性双空间E”。他在第六届国际复分析学术研讨会论文集上发表了论文“论无限维空间中的全纯函数的扩展”。研究员 Sinya Nishibata 研究了耦合双曲和椭圆 P.D.E. 系统。他证明了熵函数的存在性等价于系统的联立对角性,并且在这种条件下,可以使用经典技术来建立解的短期存在性。此外,他还表明,在稳定性假设下,长期解也存在,并且当 t 趋于*时,它们收敛到平衡状态。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shuichi Kawashima and Shinya Nishibata: "Shock Waves for a model system of radiating gas" SIMA Journal of Mathematical Analysis. 発表予定.
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIMA 数学分析杂志 待出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima and Shinya Nishibata: "Shock waves for amodel system of radiating gas" SIAM Journal of Mathematical Analysis. 発表予定.
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIAM 数学分析杂志即将出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima and Shinya Nishibata: "Shock Waves for a model system of radiating gas" SIAM Journal of Mathemtical Analysis. (To appear).
Shuichi Kawashima 和 Shinya Nishibata:“辐射气体模型系统的冲击波”SIAM 数学分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shuichi Kawashima, Yoshiko Niikuni, and Shinya Nishibata: "The initial vabne problem for hyperbolic-elliptic coupled system and applications to radiation hydrodynainics" Analysis of Systems of Conservation Laws. 発表予定.
Shuichi Kawashima、Yoshiko Niikuni 和 Shinya Nishibata:“双曲椭圆耦合系统的初始 vabne 问题及其在辐射流体动力学中的应用”,守恒定律系统分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoe Itokawa and Katsuhiro Shiohama: "The unboundedness of certain minimal submanifolds of positively curved riemannian spaces" Differential Geometry and Its Applications. (To appear).
Yoe Itokawa 和 Katsuhiro Shiohama:“正弯曲黎曼空间的某些最小子流形的无界性”微分几何及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOKAWA Yoe其他文献
ITOKAWA Yoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOKAWA Yoe', 18)}}的其他基金
Global Studies on Curvature and Geometric Structures of Riemannian Manifolds
黎曼流形曲率和几何结构的全局研究
- 批准号:
13640093 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Perverse sheaves and schobers
反常的滑轮和 schobers
- 批准号:
20H01794 - 财政年份:2020
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mean Curvature Flow and Minimal Varieties
平均曲率流量和最小品种
- 批准号:
1711293 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Boundedness of Fano varieties
Fano 簇的有界性
- 批准号:
16K17558 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On families of algebraic varieties admitting unipotent group actions from the viewpoint of Minimal Model Program
从最小模型程序的角度论承认单能群作用的代数簇族
- 批准号:
15K04805 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)