熱対流を記述する非線型偏微分方程式の解の定性的性質の研究
描述热对流的非线性偏微分方程解的定性性质研究
基本信息
- 批准号:07740117
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
2枚の水平平行板間に流体をいれ、下から一様に加熱していくと静止状態が不安定化を起こして対流が発生し、さまざまな対流パターンが見られる。この対流はブシネスク方程式で記述され、現象に対応するさまざまな定常解が得られている。これらの定常解の中でもロール型対流解については、ブシネスク方程式から形式的に導かれた簡単なモデル方程式を用いて、その安定性の解析が行われてきた。しかしながら、ブシネスク方程式を用いてのロール型対流解の安定性の数学的に厳密な解析はあまり行われていない。本研究では、ロール型対流解の安定性をブシネスク方程式を用いて明らかにし、また、モデル方程式としてよく知られたギンツブルグ-ランダウ方程式やスウィフト-ホ-ヘンバーグ方程式の数学的に厳密な導出を行うことを目標とした。本年度の研究では、ブシネスク方程式のロール型対流解のまわりでの線形化作用素のスペクトルを調べ、ロール型対流解の2次元攪乱に対する線形化安定性および不安定性に関するエックハウスの判定条件の証明をWolf von Wahlと共同で与えた。この結果はInternational Journal of Non-Linear Mechanicsに発表予定である。今後は3次元攪乱に対する安定性、不安定性の判定条件を与え、ギンツブルグ-ランダウ方程式やスウィフト-ホ-ヘンバーグ方程式の数学的に厳密な導出を行いたい。また、ロール型対流解が不安定な場合、ロール型対流解の近傍に初期値をとる初期値問題の解がどのような振る舞いをするのかについて力学系の手法を用いて考察してみたい。
当流体倒入两个水平平行板之间并从下方均匀加热时,静止状态变得不稳定并发生对流,从而导致各种对流模式。这种对流由 Boussinesq 方程描述,并且已经获得了与该现象相对应的各种稳态解。在这些稳态解中,使用从 Boussinesq 方程正式导出的简单模型方程分析了滚动型对流解的稳定性。然而,使用 Boussinesq 方程对卷型对流解的稳定性进行严格的数学分析还没有经常进行。在本研究中,我们将使用 Boussinesq 方程阐明滚动型对流解的稳定性,并对著名的模型方程(例如 Ginzburg-Landau 方程和 Swift-Hochenberg 方程)进行数学严格的推导。是为了在今年的研究中,我们研究了Boussinesq方程的Roll型对流解的线性化算子谱,并与von联合证明了Roll型对流解的二维扰动的线性化稳定性和不稳定性的Eckhaus准则。瓦尔。研究结果将发表在《国际非线性力学杂志》上。将来,我想提供确定针对三维扰动的稳定性和不稳定性的标准,并对Ginzburg-Landau方程和Swift-Hochenberg方程进行数学严格的推导。我还想使用动力系统方法来考虑当滚动对流解不稳定时,采用接近滚动对流解的初始值的初始值问题的解如何表现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshiyuki Kagei,Wolf von Wahl: "The Eckhaus criterion for the convection roll solutions of the Oberbeck-Boussinesq equations." Int.J.Non-Linear Mech.,to apper.
Yoshiyuki Kagei,Wolf von Wahl:“Oberbeck-Boussinesq 方程的对流滚动解的 Eckhaus 准则。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
隠居 良行其他文献
On the spectrum of linear artificial compressible system
线性人工可压缩系统的谱
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Takafumi Akahori;Slim Ibrahim;Hiroaki Kikuchi;Hayato Nawa;Reika Aoyama and Yoshiyuki Kagei;名和 範人;名和 範人;Yoshiyuki Kagei and Naoki Makio;名和 範人;Yoshiyuki Kagei and Kazuyuki Tsuda;Yoshiyuki Kagei;菊池弘明;隠居 良行;赤堀 公史;隠居良行;菊池弘明;榎本 翔太,隠居 良行,Mohamad Nor Azlan;菊池弘明;アハット アブリズ,隠居 良行;名和 範人;隠居良行;Yoshiyuki Kagei;Hayato NAWA;隠居 良行;Hayato NAWA;Yoshiyuki Kagei;Yoshiyuki Kagei;Yoshiyuki Kagei;Yoshiyuki Kagei;Hayato NAWA;Yoshiyuki Kagei;名和範人;Yoshiyuki Kagei;Yoshiyuki Kagei;Yoshiyuki Kagei;隠居良行,西田孝明,寺本有花;隠居良行;隠居良行;Yoshiyuki Kagei;Yoshiyuki Kagei;隠居良行;隠居 良行;隠居 良行;Yoshiyuki Kagei;隠居 良行;アハット アブリズ,榎本 翔太,隠居 良行;Yoshiyuki Kagei - 通讯作者:
Yoshiyuki Kagei
Weihrauch reducibility on multi-represented spaces
多重表示空间上的 Weihrauch 可约性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
隠居 良行;竹田 寛志;川上竜樹;Takayuki Kihara - 通讯作者:
Takayuki Kihara
細分された辺を持つ凸多角形の三角形分割の数え上げ
计算具有细分边缘的凸多边形的三角剖分
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
隠居 良行;竹田 寛志;川上竜樹;Takayuki Kihara;川上竜樹;Takeda Hiroshi;木原貴行;Tomoki Nakamigawa;Shinsuke Iwao;中上川 友樹 - 通讯作者:
中上川 友樹
The expansion of a chord diagram and the Genocchi numbers
和弦图的展开和 Genocchi 数
- DOI:
10.26493/1855-3974.2239.7f1 - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
隠居 良行;竹田 寛志;川上竜樹;Takayuki Kihara;川上竜樹;Takeda Hiroshi;木原貴行;Tomoki Nakamigawa - 通讯作者:
Tomoki Nakamigawa
隠居 良行的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('隠居 良行', 18)}}的其他基金
準線形双曲-放物型保存則系における時空間非一様ダイナミクスの漸近解析
拟线性双曲-抛物线守恒定律系统时空非均匀动力学的渐近分析
- 批准号:
24H00185 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
熱対流方程式の解の定性的性質の数学的研究
热对流方程解的定性性质的数学研究
- 批准号:
06740124 - 财政年份:1994
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
熱対流方程式の解の定性的性質の数学的研究
热对流方程解的定性性质的数学研究
- 批准号:
06740124 - 财政年份:1994
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)