A Synthesis Theory of Stable Equilibrium Solutions for Large Scale Dynamical Neural Networks and Its Application to Associative Memories.

大规模动态神经网络稳定平衡解的综合理论及其在联想记忆中的应用。

基本信息

  • 批准号:
    07650464
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

In this research project, a synthesis theory for dynamical neural networks using the McCullough-Pitts model proposed in 1943 as a simple mathematical model for a brain neuron was studied particularly focussing on their stable equilibrium solutions. In particular, having in mind application of neural networks to associative memories, first a dynamical neural network having a special structure, called a module neural network, was introduced to store primitive information, and its basic behaviors were investigated. Then, by connecting a number of such module neural networks a large scale and its equilibrium solutions were studied.The main results obtained are listed below :1.A method for constructing a module neural network having a given set of vectors as its stable equilibrium solutions, and further a possibility of ajusting the domain of a stable equilibrium solution was discussed.2.A module dynamical neural network, having a special structure, was introduced, and then a method was proposed for constructing a large scale neural network, called a multi-module neural network, by connecting a number of such module neural networks without changing all the equilibrium solutions of the connectied module neural networks.3.To avoid the rapid decrease in the ability of associative memories due to the number of information vectors to be stored approaching the dimension of the information vectors, a generalized dynamical neural network was proposed, and its construction method was discussed.4.A number of computer simulations were performed to evaluate the effectiveness of the theoretical results obtained.
在该研究项目中,研究了一种针对1943年提出的McCullough-Pitts模型作为脑神经元的简单数学模型的综合理论,特别专注于其稳定的平衡溶液。特别是,考虑到将神经网络应用于关联记忆,首先引入了具有特殊结构的动态神经网络,称为模块神经网络,并研究了其基本行为。 Then, by connecting a number of such module neural networks a large scale and its equilibrium solutions were studied.The main results obtained are listed below :1.A method for constructing a module neural network having a given set of vectors as its stable equilibrium solutions, and further a possibility of ajusting the domain of a stable equilibrium solution was discussed.2.A module dynamical neural network, having a special structure, was introduced, and then提出了一种方法来构建大规模的神经网络,称为多模型神经网络,通过连接许多此类模块神经网络而不改变连接模块神经网络的所有均衡解决方案,避免避免迅速降低信息网络的能力,因为信息媒介的数量是构建的动态范围,并构建了一个通用的方法,是一种通用的方法,是一种通用的方法,是一种通用的范围,是一种通用的方法,是一种通用的范围,是一种通用的范围。讨论了。4。进行了数量的计算机模拟,以评估获得的理论结果的有效性。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Shoji: "A module neural networks and its basic behaviors" Proc. IEEE Int. Conf. Neural Networks. (1997)
Y.Shoji:“模块神经网络及其基本行为”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Inaba: "Multi-module neural networks and their application to associative memories" Proc. IEEE Int. Conf. Neural Networks and Signal Processing. 1. 110-113 (1995)
H.Inaba:“多模块神经网络及其在联想记忆中的应用”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Shoji and H.Inaba: "A Module Neural Networks and Its Basic Behaviors" Proc.Int.Conf.Neural Networks. (1997)
Y.Shoji 和 H.Inaba:“模块神经网络及其基本行为”Proc.Int.Conf.Neural Networks。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Inaba: "Equilibrium solutions of neural networks with a special structure" Proc.IEEE Int.Conf.Neural Networks and Signal Processing. Vol.1. 75-78 (1995)
H.Inaba:“具有特殊结构的神经网络的平衡解”Proc.IEEE Int.Conf.神经网络和信号处理。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Shoji: "A module neural networks and its basic behaviors" Proc.IEEE Int.Conf.Neural Networks.(to appear.). (1997)
Y.Shoji:“神经网络模块及其基本行为”Proc.IEEE Int.Conf.Neural Networks。(即将出现。)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INABA Hiroshi其他文献

INABA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INABA Hiroshi', 18)}}的其他基金

Creation of periodic pattern of metal nanoparticles on helical lattice of internal skeleton of microtubules
在微管内部骨架的螺旋晶格上创建金属纳米粒子的周期性图案
  • 批准号:
    17K14517
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Methods for constructing limit cycles in oscillatory neural networks
振荡神经网络中构造极限环的方法
  • 批准号:
    15560387
  • 财政年份:
    2003
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Perspective System Theory in Machine Vision and Construction of Observers
机器视觉中的视角系统理论与观察者的构造
  • 批准号:
    13650497
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Theory of Dynamic Machine Vision and Computational Algorithms
动态机器视觉理论与计算算法
  • 批准号:
    11650455
  • 财政年份:
    1999
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Theory of Systems Characterized by Parameters and It's Application to Control Systems
参数表征系统理论及其在控制系统中的应用
  • 批准号:
    04650386
  • 财政年份:
    1992
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了