The Application of the Bifurcation Theory to the Stability of Microstructure and the Improvement of the Superalloys.

分岔理论在微观组织稳定性及高温合金改进中的应用。

基本信息

  • 批准号:
    07455280
  • 负责人:
  • 金额:
    $ 4.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Several interesting phenomena for the formation of microstructure have recently been observed when the materials are elastically constrained. Particularly, the extraordinary behavior in the precipitate coarsening ; deceleration of particle coarsening and splitting of a particle into small ones are typical examples. These phenomena have theoretically supported by "bifurcation theory". In the practical point of view, these phenomena predict an existence of non-over aging materials. The purpose of the present work is to get more wide range information for these phenomena experimentally, and also to give more accurate theoretical background. The results obtained are as follows.(1) Splitting of a particle was newly recognized in Ni-Mo and Fe-Al-Co alloy systems. However, the shapechanging rate of split particles in Fe-Al-Co was remarkably fast. Results from the energetic estimation for the sequence of the particle splitting, the splitting path experimentally observed was consistent with min … More imum-energy path predicted by the theoretical calculation(2) We proposed a new experimental method to investigate the composition dependent phenomena in materials science based on the observation of microstructure changes in a continuous composition gradient field. Utilizing this new method, the equilibrium compositions at the interface of precipitate/matrix could experimentally be obtained for various particle sizes, and thus the Gibbs-Thomson's relation, which is the fundamental low in the precipitates coarsening, was verified experimentally.(3) A new calculation method for the nonlinear diffusion equation was proposed, where the composition dependencies of atomic interaction energy, elasticity and mobility of atoms were taken into account so as to be able to calculate the phase decomposition in the real alloy system. The two dimensional simulations were performed for the phase decomposition in the Fe-Mo binary system. The microstructures calculated were well coincident with experimental facts, and typical features in the strain-induced microstructure changes were successfully calculated. Less
当terials的质量是粒子变速下的,这些现象的差异是在较严重的现象中,这些现象是在粒子上的质量上,这些现象的严重性被观察到了Themoct的观点是,非衰老材料的存在是为了获得更广泛的范围,以实验,并提供更准确的理论背景。 Al-CO非常快,从粒子分裂的估计结果中,观察到的分裂路径是一致的,这是一致的iMum-Energy路径(2)我们提出了一种新的体验方法来研究组合物MENA在基于连续组成梯度中微观结构的材料科学中。在原子相互作用能量的组成依赖性的情况下,原子的弹性和迁移率是Takento帐户,因此能够计算到实际合金系统。事实和GES中的典型特征成功地计算出来

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Miyazaki: ""Computer Simulations of Phase Decomposition in Real Alloy Systems Based on a Discrete Type Diffusion Equation"" Mathematics of Microstructure Evolution. (Proc.of the Inter.Symp.on Math.of Therm.Driven Microst.Evolution). 111-124 (1996)
T.Miyazaki:“基于离散型扩散方程的真实合金系统相分解的计算机模拟”微观结构演化数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takao Kozakai and Toru Miyazaki: "Experimental and theoretical phease diagrams of thr Fe-rich Fe-Si-Ge ordering system." J. Materials Science,. 30. 5056-5064 (1995)
Takao Kozakai 和 Toru Miyazaki:“富铁 Fe-Si-Ge 有序体系的实验和理论相图。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki: "Computer Simulations of Phase Decomposition in Real Alloy Systems Based on a Discrete Type Diffusion Equation" Mathematics of Microstructure Evolution. (Proc. of the Inter. Symp. on Math. of Therm. Driven Microst. Evolution). 111-124 (1996)
T.Miyazaki:“基于离散型扩散方程的真实合金系统相分解的计算机模拟”微观结构演化数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Koyama: ""A Numerical Calculation of Phase Decomposition Process Based on Discrete Type Diffusion Equation"" J.Japan Inst.Matals. Vol.60. 553-559 (1996)
T.Koyama:“基于离散型扩散方程的相分解过程的数值计算”J.Japan Inst.Matals。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyazaki: ""A New Characterization Method of the Microstructure Using the Macroscopic Composition Gradient in Alloys"" Metall.And Mater.Trans.Vol.27A. 945-949 (1996)
T.Miyazaki:“一种利用合金宏观成分梯度表征微观结构的新方法”Metall.And Mater.Trans.Vol.27A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAZAKI Toru其他文献

MIYAZAKI Toru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAZAKI Toru', 18)}}的其他基金

Analysis of entire roles for AIM in atherosclerogenesis
AIM 在动脉粥样硬化形成中的全部作用分析
  • 批准号:
    19390094
  • 财政年份:
    2007
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the new method to investigate the phase transformations based on the computational scientific approachs.
开发基于计算科学方法研究相变的新方法。
  • 批准号:
    09242105
  • 财政年份:
    1997
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Development of the bifurcation theory for the microstructure changes and an application to the superalloys
微观结构变化分叉理论的发展及其在高温合金中的应用
  • 批准号:
    09450235
  • 财政年份:
    1997
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Visualization of the Phase Decomposition Process Based on the Non-liner Diffusion Equation.
基于非线性扩散方程的相分解过程的可视化。
  • 批准号:
    07555477
  • 财政年份:
    1995
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
The application of the bifurcation theory to the microstructure changes and its stability.
分岔理论在微观结构变化及其稳定性中的应用。
  • 批准号:
    04452270
  • 财政年份:
    1992
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
The application of the bifurcation theory to the microstructure change and its stability.
分岔理论在微观结构变化及其稳定性中的应用
  • 批准号:
    02452245
  • 财政年份:
    1990
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Shape Bifurcation Theory on the Stability of Microstructure and its Applications
微观结构稳定性的形状分岔理论及其应用
  • 批准号:
    62460194
  • 财政年份:
    1987
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

后过渡态分叉理论研究新策略的开发与应用
  • 批准号:
    22303027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
边界层转捩诱导动态失稳的分叉理论分析与数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
非线性波方程多波解的动力学行为研究
  • 批准号:
    11801240
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
精确相干态在转捩和完全发展湍流中对湍流结构生成和发展的作用研究
  • 批准号:
    91752113
  • 批准年份:
    2017
  • 资助金额:
    96.0 万元
  • 项目类别:
    重大研究计划
基于Hopf分叉理论和ASMs模型的多级环流MBR处理β-内酰胺类抗生素及中间体废水的多重稳态性调控机制研究
  • 批准号:
    51778114
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
  • 批准号:
    RGPIN-2020-05009
  • 财政年份:
    2022
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2022
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
  • 批准号:
    RGPIN-2018-06520
  • 财政年份:
    2022
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2021
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
  • 批准号:
    RGPIN-2018-06520
  • 财政年份:
    2021
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了