Comprehensive Study of Functional and Real Analysis
泛函分析和实分析的综合研究
基本信息
- 批准号:07304014
- 负责人:
- 金额:$ 13.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a comprehensive research project involving all active mathematicians in the fields of Functional and Real Analysis. The aim is to have a proper perspective of recent progress in these fields in Japan as well as in the world so that coordinated research activities are possible for the future. For this purpose we made five groups according to the subjects.Each group conducted standing seminars and a nationwide meeting each year. The Investigators met three times every year in order to maintain close correspondence between the groups, and organized a joint symposium each year.In view of this character of the research project it is difficult to summarize our results in a few words but the following could be said. Until recently both Functional Analysis and Real Analysis are so much specialized that many results are profound but interest only few specialists of particular fields. However, we are having now a new trend in which those profound results are applied to an unexpected problem to make a breakthrough of a field which is stagnated for a long time. Our research project has promoted this desirable tendency of researches.For example, some of the function spaces appearing in Real Analysis have been proved to play a essential role in the theory of partial differential equations, although they were introduced only by theoretical necessity in Real Analysis. Toeplitz operators, which were introduced as examples of operators not equivalent to multiplications, are recognized as the same as pseudodifferential operators, and have found applications to the representation theory of Lie groups. Many approaches have been made for non-linear problems. A new lights was shed on the classical WKB method of perturbation.
这是一个综合性研究项目,涉及泛函分析和实分析领域的所有活跃数学家。目的是对日本以及世界范围内这些领域的最新进展有一个正确的认识,以便将来可以协调研究活动。为此,我们按照主题分为五个小组,每个小组每年举办一次常设研讨会和一次全国性会议。为了保持各小组之间的密切联系,研究人员每年举行三次会议,并每年组织一次联合研讨会。鉴于该研究项目的这一特点,很难用几句话来概括我们的结果,但可以如下:说。直到最近,泛函分析和实分析都非常专业化,以至于许多结果都很深刻,但只有少数特定领域的专家感兴趣。然而,我们现在出现了一种新的趋势,即这些深刻的成果被应用于意想不到的问题,以突破长期停滞的领域。我们的研究项目推动了这一理想的研究趋势。例如,实分析中出现的一些函数空间已被证明在偏微分方程理论中发挥着重要作用,尽管它们只是出于理论需要而在实分析中引入的。 Toeplitz 算子是作为不等价于乘法的算子示例引入的,被认为与伪微分算子相同,并且已应用于李群表示论。针对非线性问题已经提出了许多方法。对经典 WKB 微扰方法有了新的认识。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小松彦三郎編: "第35回実函数論・函数解析学合同シンポジウム講演集録" 118 (1996)
小松彦三郎主编:《第35届实函数理论与泛函分析联合研讨会论文集》118(1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tajima,Shinichi: "Bloch function in an external electric field and Berry-Buslaev phase" New Trends in Microlocal Analysis,Springer. 143-156 (1996)
Tajima、Shinichi:“外部电场中的 Bloch 函数和 Berry-Buslaev 相”微局域分析新趋势,Springer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Komatsu,Hirosaburo: "Solution of differential equations by means of Laplace hyper functions" Structure of Solutions of Differential Equations,World Scientific. 227-252 (1996)
小松,弘三郎:“通过拉普拉斯超函数求解微分方程”微分方程解的结构,世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fujii,Masatoshi-Kamei,Eizaburo: "Mean-thesretic approach to the grand Furuta,inequality" Proc.Amer.Math.Soc.124. 2751-2756 (1996)
Fujii,Masatoshi-Kamei,Eizaburo:“对伟大古田不平等的平均理论方法”Proc.Amer.Math.Soc.124。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakazi,T & Yamada,M.: "(A_2)-conditions and Carleson inequalities" Pacific J.Math.173. 151-171 (1996)
纳卡兹,T
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOMATSU Hikosaburo其他文献
KOMATSU Hikosaburo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOMATSU Hikosaburo', 18)}}的其他基金
The Study of the History of mathematics as a Branch of Mathematics
数学作为数学分支的史研究
- 批准号:
23540124 - 财政年份:2011
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
History of Mathematics from the viewpoint of Mathematics
从数学的角度看数学史
- 批准号:
20540107 - 财政年份:2008
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of History of Mathematics, in particular, of Japanese Mathematics in early Edo Period and of Analysis in the Nineteenth Century
数学史研究,特别是江户时代初期的日本数学和19世纪的分析
- 批准号:
16540119 - 财政年份:2004
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional and Real Analysis for Partial Differential Equations
偏微分方程的泛函分析和实分析
- 批准号:
09440069 - 财政年份:1997
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microlocal Analysis of Differential Equations
微分方程的微观局部分析
- 批准号:
03452007 - 财政年份:1991
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
生物基质中真实PM2.5的原位分析及在PM2.5入脑行为研究中的应用
- 批准号:22376202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向真实场景的深度视频修复溯源分析与可信取证
- 批准号:62372164
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于可解释Transformer框架分析真实临床数据预测克罗恩病生物制剂疗效的方法研究
- 批准号:62371303
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
开放场景中真实世界的面部表情分析关键技术与应用
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
蜂蜜真实性高维鉴别模型的构建与整体分析策略研究
- 批准号:32172300
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
The Universe Connected: Real-Time Analysis for the science drivers of the future
连接的宇宙:未来科学驱动因素的实时分析
- 批准号:
MR/Y01166X/1 - 财政年份:2024
- 资助金额:
$ 13.18万 - 项目类别:
Fellowship
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
- 批准号:
24K20735 - 财政年份:2024
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-TT: Broadening Real-Time Continuous Traffic Analysis on the Roadside using AI-Powered Smart Cameras
PFI-TT:使用人工智能驱动的智能摄像头扩大路边实时连续交通分析
- 批准号:
2329780 - 财政年份:2023
- 资助金额:
$ 13.18万 - 项目类别:
Continuing Grant
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
$ 13.18万 - 项目类别: