代数多様体の分岐被覆

代数簇的分支覆盖率

基本信息

  • 批准号:
    06740031
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

当研究のテーマは代数多様体のGalois分岐被覆,特にGalois群が非可換有限群であるのもの効果的な,つまり具体的に実行可能な構成方法を与えることとその方法を用いてできる代数多様体の研究であった.このテーマに関し今年度得られた成果は以下の通りである.これらはすべて論文On dihedral Galois coveringにおいて研究したことや,それ以前の研究をより発展させたものである.1.Preprint,A remark on Bartolo's paperではBartoloにより明確に定義されたZariski pairというものに関して研究を行なった.ここで行なわれていることは彼が論文Sur les couples de Zariskiで紹介した例に別証を与えている.手法はdihedral Galois coveringの手法を用いたもので彼の手法とは全く異なっている.この論文は現在投稿中である.2.dihedrla Galois coveringの手法を用いて新しい6次曲線のZariski pairをいくつか構成した.さらにそれを用いれば無限個の系列がえられるのではないかという見通しも立っている.Zariski pairに関してはZariski以来殆ど研究されていないようであったがここにきて一気に研究が進みつつある.3.Perssonが定義したmaximizing sexticに関しそれに沿って分岐するdihedral Galois coveringについて研究した.特に曲線が既約な場合はGalois群が3次対称群であるような分岐被覆が存在するための十分条件を与えた.これらの曲線Cは,P^2での補空間P^2\Cの基本群が非可換群となるような有理曲線の例となっている.このような曲線の組織的な研究は去年度からの続いた研究目的であり,それに関し,ひとつのまとまった結果がえられたと言える.これらの結果のうちいくつかは城崎での代数幾何学シンポジウムで報告した.2,3の結果に関する論文は現在準備中である.4.2面体群以外の有限群例えば4元数群をGalois群に持つGalois被覆については,関数体のGalois拡大を標準的に構成する部分でdihedral Galois coveringとかなり異なることがわかった.この部分をうまくクリアするべく研究中である.
这项研究的主题是Galois分支的覆盖代数流形的尤其是Galois组是一个不受欢迎的有限群体,并且对代数流形的研究可用于提供有效,可行的可行施工方法,并且可以使用该方法来实现这一结果。所有这些都在有关二面体Galois覆盖和进一步发展的论文中进行了研究。1。在关于巴托洛论文的预印象的预印象中,我们对Zariski对进行了研究,该对由Bartolo显然定义。在这里所做的是与他在纸质夫妇de Zariski中介绍的示例不同的证词。该方法是二二二二二二二二二邦,本文基于覆盖技术,并且与他的方法完全不同。目前正在提交本文。2.dihedragalois一对带有累积曲线的新的Zariski对使用覆盖技术构建,似乎还可以使用Zariski Issar sar。迅速。3.DiheDralGalois,它沿着由Persson定义的最大化六链分支分支,我们研究了覆盖范围。特别是,当曲线不可还原时,我们为存在的分支覆盖物提供了足够的条件,其中Galois组是环体对称组。这些曲线C是理性曲线的示例,其中P^2处的互补空间p^2 \ c的基本组成为非共同组。自去年以来,对这种曲线的系统研究是为了继续研究,可以说获得了单一的合并结果。其中一些结果在基诺萨基的代数几何研讨会上报道。目前正在准备少数几个结果的论文。 4。对于除二面体以外的有限基团的Galois覆盖物,例如,Galois组的Quaternional群体与通常构成功能体的Galois扩展的部分中的二面体Galois覆盖有很大不同。我们目前正在研究成功清除此部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

徳永 浩雄其他文献

Asymptotic polybalanced kernels on extremal Kaehler manifolds
极值凯勒流形上的渐近多平衡核
  • DOI:
    10.4310/ajm.2018.v22.n4.a2
    10.4310/ajm.2018.v22.n4.a2
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    白根竹人;E.Artal Bartolo;坂内 真三;徳永 浩雄;Toshiki Mabuchi
    白根竹人;E.Artal Bartolo;坂内 真三;徳永 浩雄;Toshiki Mabuchi
  • 通讯作者:
    Toshiki Mabuchi
    Toshiki Mabuchi
楕円曲面を用いた公開鍵暗号への効率的な攻撃法
利用椭圆面的公钥密码的高效攻击方法
  • DOI:
  • 发表时间:
    2008
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    福地 弘之;内山 成憲;徳永 浩雄
    福地 弘之;内山 成憲;徳永 浩雄
  • 通讯作者:
    徳永 浩雄
    徳永 浩雄
代数曲面を用いた公開鍵暗号の安全性について
论使用代数曲面的公钥密码学的安全性
  • DOI:
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    内山 成憲;徳永 浩雄
    内山 成憲;徳永 浩雄
  • 通讯作者:
    徳永 浩雄
    徳永 浩雄
Recent results on asymmetric information and insider trading. Plenary speaker.
关于不对称信息和内幕交易的最新结果。
  • DOI:
  • 发表时间:
    2006
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    福地 弘之;内山 成憲;徳永 浩雄;Arturo Kohatsu-Higa
    福地 弘之;内山 成憲;徳永 浩雄;Arturo Kohatsu-Higa
  • 通讯作者:
    Arturo Kohatsu-Higa
    Arturo Kohatsu-Higa
代数曲面を用いた公開鍵暗号への効率的な攻撃法
利用代数面的公钥密码的高效攻击方法
  • DOI:
  • 发表时间:
    2008
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    福地 弘之;内山 成憲;徳永 浩雄
    福地 弘之;内山 成憲;徳永 浩雄
  • 通讯作者:
    徳永 浩雄
    徳永 浩雄
共 5 条
  • 1
前往

徳永 浩雄的其他基金

楕円曲面及び超楕円曲線束の多重切断の幾何と平面曲線配置のトポロジー
椭圆曲面和超椭圆曲线束的多重切割几何及平面曲线排列拓扑
  • 批准号:
    24K06673
    24K06673
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Elliptic surfaces, branched covers and the topology of plane curve arrangements
椭圆面、分支覆盖和平面曲线排列的拓扑
  • 批准号:
    20K03561
    20K03561
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
代数幾何学に現れるプロシージャの計算論的学習理論の側面
代数几何中出现的计算学习理论的各个方面
  • 批准号:
    16650002
    16650002
  • 财政年份:
    2004
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
    Grant-in-Aid for Exploratory Research
函数体上の代数曲線の数論と分岐被覆
函数域上代数曲线的数论和分支覆盖
  • 批准号:
    09740031
    09740031
  • 财政年份:
    1997
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
    Grant-in-Aid for Encouragement of Young Scientists (A)
代数多様体の分岐被覆とその応用
代数簇的分支覆盖及其应用
  • 批准号:
    07740033
    07740033
  • 财政年份:
    1995
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
    Grant-in-Aid for Encouragement of Young Scientists (A)
数論と分岐被覆、そしてCalabi-Yan多様体
数论、分支覆盖和 Calabi-Yan 流形
  • 批准号:
    05230049
    05230049
  • 财政年份:
    1993
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
    Grant-in-Aid for Scientific Research on Priority Areas
数論的手法を用いた分岐被覆の研究
基于算术方法的分支覆盖研究
  • 批准号:
    05854002
    05854002
  • 财政年份:
    1993
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
    Grant-in-Aid for Encouragement of Young Scientists (A)
被覆理論による複素多様体の研究
使用覆盖理论研究复流形
  • 批准号:
    01740055
    01740055
  • 财政年份:
    1989
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

K3 surfaces and related algebraic varieties
K3 曲面和相关代数簇
  • 批准号:
    20340002
    20340002
  • 财政年份:
    2008
  • 资助金额:
    $ 0.58万
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)