Research on Fourier multiplier by operating functions on function spaces
函数空间上函数运算的傅里叶乘子研究
基本信息
- 批准号:06804010
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research I study Fourier multiplier on locally compact abelian groups G.The maximal ideal space of p-q multplier on a comact abelian group is identified. In particular, I proved that the dual group of G is dense in the maximal ideal space, henceforce naturality of sspectra of p-q multiplier is proved. The operating functions of p-2 multplier is also identified. Let C_0M_p (G) denote the algebra of L^p-multiplier whose Fourier transforms vanish at infinity. I proved that the Apostol algebra coincides with the greatest regular closed subalgebra RegC_0M_p (G) and they are maximal, in a sense, in C_0M_p (G). The proof depends on the general results concerning abstract algebras of continuous functions which are modeled after Fourier multipliers. I also proved that if the maximal ideal space of the algebra in thin, they the greatest regular closed subalgebra coincides with the set of functions with natural spectra. Laursen and Neumann proved that if p=1 or G is compact, then RegC_0M_p (G) is the closed ideal C_<00>M_p (G) which consists of multplier whose Gelfand transforms vanish of the dual group of G.I proved that if p*1, then RegC_0M_p (R^n) is not an ideal of C_0M_p (R^n) and C_<00>M_p (R^n)= {0}. Let G be a non-discrete locally comapct abelian group. I prove that there exists a bounded regular Borel measure outside of the radical of L^1 (G) with a natural spectrum. In particular if G is not compact, then the Fourier-Stieltjes transform of the measure can be vanish at infinity on the dual group, which answers the question posed by Eschimier, Laursen and Neumann. I also study BSE-algebras.
在这项研究中,我研究了局部紧阿贝尔群G上的傅立叶乘子。确定了紧阿贝尔群上p-q乘子的最大理想空间。特别是,我证明了G的对偶群在最大理想空间中是稠密的,从而证明了p-q乘子谱的自然性。 p-2乘法器的操作功能也被确定。令C_0M_p (G) 表示L^p-乘子的代数,其傅里叶变换在无穷远处消失。我证明了 Apostol 代数与最大正则闭子代数 RegC_0M_p (G) 一致,并且从某种意义上说,它们在 C_0M_p (G) 中是最大的。证明取决于有关连续函数抽象代数的一般结果,这些连续函数是根据傅里叶乘数建模的。我还证明了如果代数的最大理想空间很薄,则它们的最大正则闭子代数与具有自然谱的函数集相一致。 Laursen 和 Neumann 证明,如果 p=1 或 G 是紧的,则 RegC_0M_p (G) 是闭合理想 C_<00>M_p (G),其由 G 的对偶群的 Gelfand 变换消失的乘法器组成。 1,则RegC_0M_p (R^n)不是C_0M_p (R^n)和C_<00>M_p的理想值(R^n)={0}。令 G 为非离散局部 comapct 阿贝尔群。我证明了在具有自然谱的 L^1 (G) 根之外存在有界正则 Borel 测度。特别是如果 G 不是紧的,那么测度的 Fourier-Stieltjes 变换可以在对偶群上无穷远处消失,这回答了 Eschimier、Laursen 和 Neumann 提出的问题。我还学习 BSE 代数。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L^p-multipliers whose Fourier transforms are continuous and vanish at infinity" Tokyo Journal of Mathematics. (to appear).
Osamu Hatori:“关于最大正则闭子代数和 L^p 乘子的 Apostol 代数,其傅里叶变换是连续的并在无穷大消失”《东京数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L-^p-multipliers whose Fourier transforms are continuous and vauish" Tokyo Journal of Mathematics. (発表予定).
Osamu Hatori:“关于最大正则闭子代数和 L-^p-乘子的 Apostol 代数,其傅立叶变换是连续且虚幻的”,《东京数学杂志》(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.-E.Takahasi: "Commutative Banach algebras and BSE-norm" Mathematica Japonica. (発表予定).
S.-E.Takahasi:“交换巴纳赫代数和 BSE 范数”Mathematica Japonica(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "Does a non-Lipschitz function operate on a non-trivial Banach function algebra?" Tohoku Mathematical Journal. 46. 253-260 (1994)
Osamu Hatori:“非 Lipschitz 函数是否可以对非平凡的 Banach 函数代数进行运算?”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L^P-multipliers whose Fourier transforms are continuous and vanish at infinity" Tokyo Journal of Mathematics. (印刷中).
Osamu Hatori:“关于最大正则闭子代数和 L^P 乘子的 Apostol 代数,其傅里叶变换是连续的并且在无穷大消失”,《东京数学杂志》(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HATORI Osamu其他文献
HATORI Osamu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HATORI Osamu', 18)}}的其他基金
Study on preserver problems on Banach alebras
巴拿赫阿莱布拉的保存问题研究
- 批准号:
22540178 - 财政年份:2010
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on algebraic properties of maps between Banach algebras which preserve topological quantities
保留拓扑量的Banach代数间映射的代数性质研究
- 批准号:
19540169 - 财政年份:2007
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on algebraic equations with coefficients in Banach algebras
Banach代数中带系数的代数方程研究
- 批准号:
17540151 - 财政年份:2005
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on automatic linearities for ring homomorphisms on commutative Banach algebras
交换Banach代数环同态自动线性研究
- 批准号:
14540161 - 财政年份:2002
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on operating functions on function spaces
功能空间操作功能研究
- 批准号:
11640157 - 财政年份:1999
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on operators with natural spectrum
自然频谱算子研究
- 批准号:
09640166 - 财政年份:1997
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
劳动收入份额对财政支出乘数的影响:理论分析、实证检验与作用分解
- 批准号:72373122
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
双重社会网络对消费行为的影响、机制及社会乘数效应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国内贸易和国际贸易的本地乘数效应研究:基于结构模型的估计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
加乘数论与Ramanujan c(n)函数研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高杠杆下的中国财政乘数和财政空间研究
- 批准号:
- 批准年份:2020
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Research Infrastructure: CC*Networking Infrastructure: Deep Soil to Supercomputing - Infrastructure Enhancements as a Force Multiplier for Idaho Research
研究基础设施:CC*网络基础设施:从深层到超级计算 - 基础设施增强是爱达荷州研究的力量倍增器
- 批准号:
2346652 - 财政年份:2024
- 资助金额:
$ 0.77万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2323398 - 财政年份:2023
- 资助金额:
$ 0.77万 - 项目类别:
Standard Grant
力学系のゼータ関数とその数論的力学系への応用
动力系统的Zeta函数及其在算术动力系统中的应用
- 批准号:
22KJ0286 - 财政年份:2023
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
- 批准号:
2301526 - 财政年份:2023
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
A Study of the Multiplier Spectrum for Rational Maps
有理图乘子谱的研究
- 批准号:
567925-2022 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral