Study on the most suitable computational method for diffusion numerical simulation
最适合扩散数值模拟的计算方法研究
基本信息
- 批准号:06555150
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Developmental Scientific Research (B)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Taking into account the highly accurate and stable features of the finite difference of second order derivative, the new refined scheme for advection is developed based on the concept of solving 2nd order wave equation instead of 1st order advection equation. Characteristics method is used in order to get an accurate solution propagating downstream only. From Taylor series analysis and many numerical experiments, parameters involved in this method could be determined as functions of Courant number. Comparison of this scheme with the other various ones in model calculations and Von Neumann stability analysis prove its superior accuracy and stability. This scheme can easily be applied to multidimensional practical problems by separating characteristic curve each component direction. This proposed scheme uses only three computational grid points, so that there is no need to pay much attention to the treatment at the boundary.2. On making accurately and effectively a numerical diffusion simulation, one should pay much attention to both the computational scheme for calculating the advection term and the computational grid size. The usable schemes for obtaining the high-accurate results depend on not only computational conditions such as grid intervals on time and space but also hydraulic conditions such as physical diffusion and velocity, while there will be the most effective grid size to get accurate solution within the allowable margin of error if the scheme used for the numerical simulation is chosen. We have attempted to develop a criterion for selecting the most usable scheme to calculate the advection term and deciding the most effective computational grid size. We made a 2nd order numerical diffusion term represent the truncation error terms, which is a infinite series. The criterion was made up by utilizing the 2nd order numerical diffusivity. Some one-dimensional test diffusion simulations have been carried out to inspect the validity of the criterion
1.考虑到二阶导数有限差分高精度和稳定的特点,基于求解二阶波动方程代替一阶平流方程的概念,提出了新的平流细化方案。使用特征方法是为了获得仅向下游传播的准确解。根据泰勒级数分析和大量数值实验,该方法涉及的参数可以确定为库朗数的函数。该方案与其他各种方案在模型计算和冯·诺依曼稳定性分析方面的比较证明了其优越的精度和稳定性。通过分离特征曲线各分量方向,该方案可以很容易地应用于多维实际问题。该方案仅使用三个计算网格点,因此无需过多关注边界处的处理。 2.准确有效地进行数值扩散模拟,既要重视平流项的计算方案,又要重视计算网格的大小。获得高精度结果的可用方案不仅取决于时间和空间上的网格间隔等计算条件,还取决于物理扩散和速度等水力条件,而在有限的范围内将存在获得精确解的最有效的网格尺寸。如果选择用于数值模拟的方案,则允许误差范围。我们试图制定一个标准来选择最可用的方案来计算平流项并确定最有效的计算网格大小。我们用二阶数值扩散项来表示截断误差项,它是一个无穷级数。该标准是利用二阶数值扩散率制定的。进行了一些一维测试扩散模拟来检验准则的有效性
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Komatsu.T.: "Applications of Refined NumericalScheme for Advection to Diffusion Simulation′s in a Natural Bdy" Proc of 26th Congress of IAHR. Vol.1. 326-331 (1995)
Komatsu.T.:“自然 Bdy 中平流扩散模拟的改进数值方案”,IAHR 第 26 届大会论文集,第 1 卷(1995 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Komatsu, T.: "A Refined Model to Evaluate the Local Dispersion Coefficient for 2-Dimensional Diffusion Simulations in a Bay" Proc.of Int.Conf.on Technologies for Marine Environment Reservation. Vol.1.463-470 (1995)
Komatsu, T.:“用于评估海湾二维扩散模拟的局部色散系数的改进模型”Proc.of Int.Conf.on 海洋环境保护技术。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小松・朝位・大串: "拡散数値シミュレーションにおける最適計算格子間隔の選定手法に関する研究" 土木学会 水工学論文集. 第40巻. (1996)
Komatsu、Asai 和 Ohkushi:“数值扩散模拟中最佳计算网格间距的选择方法的研究”日本土木工程师学会,水利工程学报,第 40 卷。(1996 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yano, S.: "Modification of depth-averaged k-epsilon turbulence model" Proc.of 10th Congress of APDIAHR Malaysia. (1996)
Yano, S.:“深度平均 k-epsilon 湍流模型的修改”Proc.of 第 10 届 APDIAHR 马来西亚大会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Komatsu.T.: "Development of Highly-Accurate and Explicit Interpolation Polynomial" Journal of Hydroscience and Hydraulic Engineering. Vol.14.No1. 1-11 (1996)
Komatsu.T.:“高精度和显式插值多项式的开发”水科学与水利工程杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOMATSU Toshimitsu其他文献
KOMATSU Toshimitsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOMATSU Toshimitsu', 18)}}的其他基金
Analysis the aging mechanisms via WDR6 and aim for building new animal aging model
通过WDR6分析衰老机制,旨在建立新的动物衰老模型
- 批准号:
16K08713 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identify FoxO1 and FoxO3a target genes that relate to anti-neoplastic effect and the anti-aging effect of calorie restriction
鉴定与抗肿瘤作用和热量限制的抗衰老作用相关的 FoxO1 和 FoxO3a 靶基因
- 批准号:
25860297 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research the possibility of the traditional Japanese medicine"Rikkunshito" as the calorie restriction mimetic drug
研究日本传统药物“六君子”作为卡路里限制模拟药物的可能性
- 批准号:
22790620 - 财政年份:2010
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on flow field and rehabilitation of aquatic environment in the Ariake Sea
有明海流场与水环境修复研究
- 批准号:
14205075 - 财政年份:2002
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of a Water Purification Method by Injecting Surface Water to Hypolimnion in Dams and Reservoirs
通过将地表水注入水坝和水库的 Hypolimnion 来净化水的方法的开发
- 批准号:
12792010 - 财政年份:2000
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for University and Society Collaboration
WATER QUALITY RESTORATION IN LAKES AND RESERVOIRS USING NATURAL ENERGY
利用天然能源恢复湖泊和水库的水质
- 批准号:
11450189 - 财政年份:1999
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Development of concrete block for improving water environment by making use of natural purification
利用自然净化改善水环境的混凝土砌块的开发
- 批准号:
07455199 - 财政年份:1995
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Volume of Wave Overtopping Gained Effectively by a 3-D Structure and Water Purification
三维结构有效获取波浪溢流体积及水净化研究
- 批准号:
05650496 - 财政年份:1993
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
多类型混合策略下Lévy风险模型若干问题:目标建模、最优决策与数值计算
- 批准号:12361095
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
面向国产处理器的数值计算程序超优化编译技术研究
- 批准号:62372046
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
对两类椭圆型随机偏微分方程数值计算的研究
- 批准号:12301497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于2.5D Voronoi块体划分的岩层运动全过程三维数值计算方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的辐射热传导问题新型数值计算方法研究
- 批准号:12271055
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Development of a Measurement Method of Early Caries (Demineralization) by Radio Wave Applications and Proposal of a "Tooth" Numerical Calculation Model
应用无线电波开发早期龋齿(脱矿质)测量方法并提出“牙齿”数值计算模型
- 批准号:
22K04139 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
- 批准号:
20K14659 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical calculation of the tool wear in industrial cold forming processes by further develop-ment of a wear model (T06)
通过进一步开发磨损模型对工业冷成型过程中的刀具磨损进行数值计算(T06)
- 批准号:
417860413 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
CRC/Transregios (Transfer Project)
Challenge to the neutron star hyperon problem based on the lattice QCD numerical calculation
基于晶格QCD数值计算挑战中子星超子问题
- 批准号:
18K03628 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sophistication and Deepning of Numerical Calculation and Active Control of Fan Noises
数值计算的精细化和深度化以及风扇噪声的主动控制
- 批准号:
17K06949 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)