Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
基本信息
- 批准号:RGPIN-2020-06109
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decades, technological advances in imaging assisted the scientific community for linking functions to structures inside the brain. Neuroimaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have revolutionized our understanding of the brain. These tools have been used to study, among other investigations, brain metabolism and neurodegenerative diseases. Despite the ubiquitous use of MRI and PET imaging in neuroscience, these techniques are not well suited when it comes to study the brain structure at a micrometer scale. In the field of neurophotonics, a tool that meets this increasing resolution requirement is serial blockface histology (SBH). This technology combines a tissue slicing apparatus with an optical microscope. The sample is sequentially sliced to reveal new tissue layers that are imaged with the microscope. The process is repeated until the whole sample has been imaged. Then, through advanced registration methods, the thousands of image tiles acquired are assembled into a single 3D volume. SBH was an essential component of many high-profile neuroscience projects mapping genome-wide gene expression and for obtaining a micrometre scale connectome in a whole mouse brain. One of the main challenges is that SBH generates a tremendous amount of data for every brain. For example, to acquire an entire mouse brain with a 40X objective offering sampling resolution of 1 µm would require an estimated acquisition time of 60 days with current SBH systems and would necessitate around 700 Terabytes (TB) of disk space to store the raw dataset. This represents a challenge for data management, reconstruction, and the analysis methods. Future applications in this neurophotonics field will increasingly require a closer synergy between imaging and machine learning. My Discovery research program has two objectives: (1) to accelerate image acquisition and reconstruction by integrating the microscope with advanced computer vision methods, and (2) to analyze the large amount of data generated by such imaging systems with machine learning based methods. The projects proposed in this research program aim to create an augmented serial blockface histology system by integrating the microscopy with novel computer vision methods, image processing and machine learning techniques. This will make this imaging technique faster, smarter and more reproducible. This will open the way to democratization of SBH and is a necessary step toward the broader adoption of this technology by the biomedical research and clinical communities.
在过去的几十年里,成像技术的进步帮助科学界将功能与大脑内部的结构联系起来,这些工具彻底改变了我们对大脑的理解。尽管 MRI 和 PET 成像在神经科学中广泛使用,但这些技术并不适合研究微米尺度的大脑结构。在神经光子学领域,满足这种不断提高的分辨率要求的工具是串行块面组织学(SBH),该技术将组织切片装置与光学显微镜相结合,对样本进行连续切片以显示成像的新组织层。重复该过程,直到对整个样本进行成像,然后通过先进的配准方法,将获取的数千个图像块组装成一个 3D 体积,SBH 是许多备受瞩目的神经科学项目映射的重要组成部分。 SBH 为每个大脑生成大量数据,例如,以 40 倍的物镜获取整个小鼠大脑。对于当前的 SBH 系统,1 µm 的采样分辨率预计需要 60 天的采集时间,并且需要大约 700 TB 的磁盘空间来存储原始数据集,这对数据来说是一个挑战。我的发现研究计划有两个目标:(1)通过将显微镜与先进技术相结合来加速图像采集和重建。计算机视觉方法,以及(2)使用基于机器学习的方法分析此类成像系统生成的大量数据。本研究计划中提出的项目旨在通过将显微镜与新颖的计算机视觉相结合来创建增强的串行块面组织学系统。方法、图像处理和机器这将使这种成像技术更快、更智能、更具可重复性,这将为 SBH 的民主化开辟道路,也是生物医学研究和临床社区更广泛采用该技术的必要步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lefebvre, Joël其他文献
Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe.
使用双光子显微镜和氧敏感纳米探针从第一原理量化 BOLD-fMRI 的微血管起源。
- DOI:
- 发表时间:
2015-02-25 - 期刊:
- 影响因子:0
- 作者:
Gagnon, Louis;Sakadžić, Sava;Lesage, Frédéric;Musacchia, Joseph J;Lefebvre, Joël;Fang, Qianqian;Yücel, Meryem A;Evans, Karleyton C;Mandeville, Emiri T;Cohen;Polimeni, Jonathan R;Yaseen, Mohammad A;Lo, Eng H;Greve, Douglas N;Buxt - 通讯作者:
Buxt
Lefebvre, Joël的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lefebvre, Joël', 18)}}的其他基金
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
DGECR-2020-00301 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
DGECR-2020-00301 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Biophysical model investigation of brain metabolism and hemodynamics during micro-strokes using optical microscopy
使用光学显微镜研究微中风期间脑代谢和血流动力学的生物物理模型
- 批准号:
434745-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Étude de la dynamique neurovasculaire microscopique à l'aide de modèles biophysiques
微观神经血管动态研究和生物物理学模型辅助
- 批准号:
424919-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Étude de la dynamique neurovasculaire microscopique à l'aide de modèles biophysiques
微观神经血管动态研究和生物物理学模型辅助
- 批准号:
424919-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Biophysical model investigation of brain metabolism and hemodynamics during micro-strokes using optical microscopy
使用光学显微镜研究微中风期间脑代谢和血流动力学的生物物理模型
- 批准号:
434745-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
相似国自然基金
拟遗传 Nakayama 代数的研究
- 批准号:10826074
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
DGECR-2020-00301 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
DGECR-2020-00301 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement