Classifying wear characteristics in lubricated sliding wear based on time series sensor signals using artificial intelligence
使用人工智能根据时间序列传感器信号对润滑滑动磨损的磨损特征进行分类
基本信息
- 批准号:525173005
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Friction and wear cause high economical losses in terms of energy and resources still today. Estimated numbers for losses due to friction and wear range at ≈23% of global energy consumption. While friction is assumed to cause significantly higher direct costs than wear, the adverse effects of wear are more difficult to describe, including amongst others aspects of environmental pollution or equipment downtime.Friction occurring in sliding surfaces usually reduces the efficiency of the technical system. Frictional energy is partially converted into thermal energy and enables the formation of wear particles. In addition, there are interactions with the dynamic behavior (stiffness, inertia) of the technical system in which the friction occurs. While a strong influence of material reactions - including wear - on the friction coefficient is clearly observed, no fundamental and general correlation between friction signal and wear mechanisms has been found, due to the high number of influencing parameters acting in different tribosystems. Still, in order to apply measures to mitigate wear, it is important to understand the wear mechanisms. Using easy to measure quantities such as friction force, temperature or vibrations of a machine to identify wear mechanisms taking place in a tribosystem - in the future also operando - is highly desirable.Novel, data-driven methods are a promising opportunity to address the intrinsic complexity of tribological problems. These include artificial intelligence (AI) and machine learning methods.In this project it will be investigated how reliably an AI can classify characteristic combinations of acting wear mechanisms and the resulting wear volumes, based on normal and friction forces, temperature evolution or high-frequency vibrations occurring in two different tribometers.To achieve these aims, high numbers of tribological tests are carried out in a controlled manner, yielding up to 5 classes of wear characteristics and wear volumes to train the AI. Their use on unseen data will show the potential of AI to classify wear characteristics and in the future possibly single wear mechanisms observed in sliding wear of metals on a fundamental level.
摩擦和磨损在当今的能源和资源方面造成了高度的经济损失,而摩擦的直接成本明显高于磨损,而磨损的不良影响则更多地描述了环境污染或设备停机时间。遇到n个滑动表面,摩擦能量会逐渐转换为摩擦粒子的形成,并使摩擦系统的动态行为(刚度,惯性)形成。出现材料反应的效果 - 包括摩擦系数,没有发现基本和一般的摩擦信号,并且磨损机制可以减轻磨损,这对于了解磨损力,温度或振动很重要。机器磨损机制发生在tribosystem中 - 未来的Alsondo中,数据驱动的方法是解决摩擦学的内在复杂性的有前途的机会。 。受控的耳朵特征和磨损量以训练AI的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr.-Ing. Stefanie Hanke其他文献
Dr.-Ing. Stefanie Hanke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr.-Ing. Stefanie Hanke', 18)}}的其他基金
Influence of Mg and Si Content in Aluminium Alloys on Severe Plastic Deformation Behaviour during Solid-State Coating Deposition using Friction Surfacing
铝合金中 Mg 和 Si 含量对摩擦堆焊固态涂层沉积过程中严重塑性变形行为的影响
- 批准号:
323162991 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Deformation and failure mechanisms in austenitic steel under coupled compressive and torsional loading
压缩和扭转耦合载荷下奥氏体钢的变形和失效机制
- 批准号:
441180620 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Optical in-situ analysis of the cavitation damage on technical alloys under repeated single bubbles
重复单气泡作用下技术合金空化损伤的光学原位分析
- 批准号:
451715773 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于气液两相耦合流动特征的飞秒强激光穿云机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
煤系复合储层高能气体冲击压裂缝穿层扩展的动态特征与机理研究
- 批准号:
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
二维自旋轨道耦合凝聚体中的量子隧穿机制及其特征动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于能量释放率理论的垂直裂缝穿层机理及扩展特征
- 批准号:51704037
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肿瘤靶向穿膜肽的选择性跨膜分子机制及其设计研究
- 批准号:31670727
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Validation of a novel rodent Candida-associated denture stomatitis model for studying pathogenesis and therapeutic management
验证一种新型啮齿动物念珠菌相关假牙口腔炎模型,用于研究发病机制和治疗管理
- 批准号:
10486400 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Association of patient characteristics, anatomy, and mechanical alignment with cartilage wear patterns in medial compartment osteoarthritis
患者特征、解剖学和机械排列与内侧间室骨关节炎软骨磨损模式的关联
- 批准号:
486499 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs
Relationship between friction and wear characteristics of nanosheets and tactile memory using electroencephalograph
使用脑电图仪研究纳米片摩擦磨损特性与触觉记忆之间的关系
- 批准号:
20K04243 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wear characteristics of C/C composite materials with cellulose nano fibers under high temperature and electric current condition
纤维素纳米纤维C/C复合材料高温电流磨损特性
- 批准号:
18K03832 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hip simulator study of wear characteristics of UHMWPE liner
UHMWPE内衬磨损特性的髋关节模拟器研究
- 批准号:
22591691 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)