Classifying wear characteristics in lubricated sliding wear based on time series sensor signals using artificial intelligence

使用人工智能根据时间序列传感器信号对润滑滑动磨损的磨损特征进行分类

基本信息

项目摘要

Friction and wear cause high economical losses in terms of energy and resources still today. Estimated numbers for losses due to friction and wear range at ≈23% of global energy consumption. While friction is assumed to cause significantly higher direct costs than wear, the adverse effects of wear are more difficult to describe, including amongst others aspects of environmental pollution or equipment downtime.Friction occurring in sliding surfaces usually reduces the efficiency of the technical system. Frictional energy is partially converted into thermal energy and enables the formation of wear particles. In addition, there are interactions with the dynamic behavior (stiffness, inertia) of the technical system in which the friction occurs. While a strong influence of material reactions - including wear - on the friction coefficient is clearly observed, no fundamental and general correlation between friction signal and wear mechanisms has been found, due to the high number of influencing parameters acting in different tribosystems. Still, in order to apply measures to mitigate wear, it is important to understand the wear mechanisms. Using easy to measure quantities such as friction force, temperature or vibrations of a machine to identify wear mechanisms taking place in a tribosystem - in the future also operando - is highly desirable.Novel, data-driven methods are a promising opportunity to address the intrinsic complexity of tribological problems. These include artificial intelligence (AI) and machine learning methods.In this project it will be investigated how reliably an AI can classify characteristic combinations of acting wear mechanisms and the resulting wear volumes, based on normal and friction forces, temperature evolution or high-frequency vibrations occurring in two different tribometers.To achieve these aims, high numbers of tribological tests are carried out in a controlled manner, yielding up to 5 classes of wear characteristics and wear volumes to train the AI. Their use on unseen data will show the potential of AI to classify wear characteristics and in the future possibly single wear mechanisms observed in sliding wear of metals on a fundamental level.
如今,摩擦和磨损在能源和资源方面造成了很高的经济损失。由于摩擦和磨损范围造成的损失数量的估计数,占全球能源消耗的约23%。虽然假定摩擦会导致直接成本明显高于磨损,但磨损的不利影响更难描述,包括环境污染或设备停机时间的其他方面。在滑动表面中发生陷阱通常会降低技术系统的效率。摩擦能量部分转化为热能,并实现磨损颗粒的形成。此外,与发生摩擦发生的技术系统的动态行为(刚度,惯性)存在相互作用。虽然清楚地观察到材料反应(包括磨损)对摩擦系数的强大影响,但由于在不同的Tribosystems中作用的影响参数的数量大量,因此未发现摩擦信号和磨损机制之间的基本和一般相关性。尽管如此,为了进行测量以减轻磨损,了解磨损机制很重要。使用易于测量的数量,例如摩擦力,温度或机器的振动来识别在摩擦系统中发生的磨损机制(将来也是Operando)是非常可取的。NOVEL,数据驱动的方法是解决培养基问题的内在复杂性的有望机会。这些包括人工智能(AI)和机器学习方法。在该项目中,将研究AI如何根据正常和摩擦力,温度进化或高频率振动来对表演磨损机制的特征组合和由此产生的磨损量进行分类。训练AI的量。它们在看不见的数据上的使用将显示AI对磨损特性进行分类的潜力,并且将来可能在基本水平的金属滑动磨损中观察到的单磨损机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Stefanie Hanke其他文献

Dr.-Ing. Stefanie Hanke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Stefanie Hanke', 18)}}的其他基金

Influence of Mg and Si Content in Aluminium Alloys on Severe Plastic Deformation Behaviour during Solid-State Coating Deposition using Friction Surfacing
铝合金中 Mg 和 Si 含量对摩擦堆焊固态涂层沉积过程中严重塑性变形行为的影响
  • 批准号:
    323162991
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deformation and failure mechanisms in austenitic steel under coupled compressive and torsional loading
压缩和扭转耦合载荷下奥氏体钢的变形和失效机制
  • 批准号:
    441180620
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optical in-situ analysis of the cavitation damage on technical alloys under repeated single bubbles
重复单气泡作用下技术合金空化损伤的光学原位分析
  • 批准号:
    451715773
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于气液两相耦合流动特征的飞秒强激光穿云机理研究
  • 批准号:
    42105176
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于气液两相耦合流动特征的飞秒强激光穿云机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维自旋轨道耦合凝聚体中的量子隧穿机制及其特征动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
煤系复合储层高能气体冲击压裂缝穿层扩展的动态特征与机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于能量释放率理论的垂直裂缝穿层机理及扩展特征
  • 批准号:
    51704037
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Validation of a novel rodent Candida-associated denture stomatitis model for studying pathogenesis and therapeutic management
验证一种新型啮齿动物念珠菌相关假牙口腔炎模型,用于研究发病机制和治疗管理
  • 批准号:
    10486400
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Association of patient characteristics, anatomy, and mechanical alignment with cartilage wear patterns in medial compartment osteoarthritis
患者特征、解剖学和机械排列与内侧间室骨关节炎软骨磨损模式的关联
  • 批准号:
    486499
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Relationship between friction and wear characteristics of nanosheets and tactile memory using electroencephalograph
使用脑电图仪研究纳米片摩擦磨损特性与触觉记忆之间的关系
  • 批准号:
    20K04243
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wear characteristics of C/C composite materials with cellulose nano fibers under high temperature and electric current condition
纤维素纳米纤维C/C复合材料高温电流磨损特性
  • 批准号:
    18K03832
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hip simulator study of wear characteristics of UHMWPE liner
UHMWPE内衬磨损特性的髋关节模拟器研究
  • 批准号:
    22591691
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了