Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings

开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法

基本信息

  • 批准号:
    RGPIN-2017-06317
  • 负责人:
  • 金额:
    $ 4.23万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

30 to 50% of the energy use in commercial buildings is wasted due to poorly maintained, degraded, and improperly controlled equipment and components. Given that indoor climate control in commercial buildings accounts for 13% of the total energy use and 11% of the CO2 emissions in Canada, optimizing their operation represents great potential to reduce our environmental impact and to provide comfortable, healthy, and productive indoor environments. The overall objective of this research program is to optimize the energy use and occupant comfort in commercial buildings by using sensor, meter, and actuator data gathered in modern building automation and control systems. With this vision in mind, the research program will address four fundamental gaps in the literature: (1) create a dataset comprising common building faults, their sensory symptoms, occurrence frequencies, and impact on energy use and comfort; (2) develop inverse models that explain multiphysical processes and occupant behaviour in buildings from sensor, meter, and actuator data; (3) develop scalable methods to diagnose physical faults in building systems and components; and (4) develop scalable methods to diagnose and correct soft faults in controls programming. The research approaches entail field-scale data collection and analyses using existing controls and automation infrastructure of three office buildings in Carleton University, field trials, and building performance simulation. The proposed research program will make significant short-term and long-term intellectual, environmental, economic, and HQP contributions to Canada. New datasets, models, and methods will be created. These will help us understand how our buildings perform and are used today. Wider usage of fault detection and diagnostics methods developed in this research program will reduce the environmental and economic impact of buildings. Adoption of these methods by a Canadian building data analytics company will contribute to our knowledge-based economy. More importantly, two PhD, two MSc, and three undergraduate students will work on data from real buildings, learn their systems and components, and their shortcomings. In a team environment, they will conduct interdisciplinary research on building physics, indoor environmental quality, building performance simulation, and data-science. These skills are invaluable, as few engineering programs in Canada provide a comprehensive background in building engineering, despite buildings' major role in our economy and society.
商业建筑中 30% 至 50% 的能源使用因设备和组件维护不善、性能退化和控制不当而被浪费。鉴于商业建筑的室内气候控制占加拿大总能源消耗的 13% 和二氧化碳排放量的 11%,优化其运行对于减少对环境的影响并提供舒适、健康和高效的室内环境具有巨大潜力。该研究计划的总体目标是通过使用现代建筑自动化和控制系统中收集的传感器、仪表和执行器数据来优化商业建筑的能源使用和居住舒适度。考虑到这一愿景,该研究计划将解决文献中的四个基本空白:(1)创建一个数据集,其中包括常见的建筑故障、其感官症状、发生频率以及对能源使用和舒适度的影响; (2) 开发逆模型,根据传感器、仪表和执行器数据解释建筑物中的多物理过程和居住者行为; (3) 开发可扩展的方法来诊断建筑系统和组件的物理故障; (4) 开发可扩展的方法来诊断和纠正控制编程中的软故障。研究方法包括使用卡尔顿大学三座办公楼的现有控制和自动化基础设施进行现场规模数据收集和分析、现场试验和建筑性能模拟。拟议的研究计划将为加拿大做出重大的短期和长期智力、环境、经济和总部计划贡献。将创建新的数据集、模型和方法。这些将帮助我们了解我们的建筑如今的性能和使用情况。本研究项目中开发的故障检测和诊断方法的更广泛使用将减少建筑物对环境和经济的影响。加拿大建筑数据分析公司采用这些方法将为我们的知识经济做出贡献。更重要的是,两名博士生、两名硕士生和三名本科生将研究来自真实建筑的数据,了解它们的系统和组件以及它们的缺点。在团队环境中,他们将进行建筑物理、室内环境质量、建筑性能模拟和数据科学等跨学科研究。这些技能非常宝贵,因为尽管建筑在我们的经济和社会中发挥着重要作用,但加拿大很少有工程项目提供建筑工程的全面背景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunay, Burak其他文献

Ten questions concerning occupant-centric control and operations
有关以乘员为中心的控制和操作的十个问题
  • DOI:
    10.1016/j.buildenv.2023.110518
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Nagy, Zoltan;Gunay, Burak;Miller, Clayton;Hahn, Jakob;Ouf, Mohamed M.;Lee, Seungjae;Hobson, Brodie W.;Abuimara, Tareq;Bandurski, Karol;André, Maíra;et al
  • 通讯作者:
    et al
Neutrophil to Lymphocyte Ratio and Serum Biomarkers : A Potential Tool for Prediction of Clinically Relevant Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage
中性粒细胞与淋巴细胞比率和血清生物标志物:预测动脉瘤性蛛网膜下腔出血后临床相关脑血管痉挛的潜在工具
  • DOI:
    10.3340/jkns.2023.0157
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kula, Osman;Gunay, Burak;Kayabas, Merve Yaren;Akturk, Yener;Kula, Ezgi;Tutunculer, Banu;Sut, Necdet;Solak, Serdar
  • 通讯作者:
    Solak, Serdar

Gunay, Burak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunay, Burak', 18)}}的其他基金

Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Collaborative Research and Development Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
A WiFi-based occupancy sensing, modelling, and simulation method to ensure COVID-19 ventilation and social distancing norms at workplaces
基于 WiFi 的占用感测、建模和模拟方法,可确保工作场所的 COVID-19 通风和社交距离规范
  • 批准号:
    554565-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Alliance Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Collaborative Research and Development Grants
A WiFi-based occupancy sensing, modelling, and simulation method to ensure COVID-19 ventilation and social distancing norms at workplaces
基于 WiFi 的占用感测、建模和模拟方法,可确保工作场所的 COVID-19 通风和社交距离规范
  • 批准号:
    554565-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Alliance Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

多源不确定性数据驱动的深水集输系统一体化状态监测研究
  • 批准号:
    62373277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高分辨率气候风险及光伏能源数据集构建与汇聚共享技术研究
  • 批准号:
    42341206
  • 批准年份:
    2023
  • 资助金额:
    60 万元
  • 项目类别:
    专项基金项目
基因组复杂重复序列区域标准测试数据集的构建
  • 批准号:
    32300518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结合开放数据集的自监督小样本元学习目标检测
  • 批准号:
    62306183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时频域电磁多数据集三维联合反演研究
  • 批准号:
    42304080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse Methods for Spatiotemporal Characterization of Gastric Electrical Activity and its Association with Upper GI Symptoms from Cutaneous Multi-electrode Recordings
皮肤多电极记录胃电活动时空特征及其与上消化道症状关联的逆向方法
  • 批准号:
    10196836
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
Inverse Methods for Spatiotemporal Characterization of Gastric Electrical Activity and its Association with Upper GI Symptoms from Cutaneous Multi-electrode Recordings
皮肤多电极记录胃电活动时空特征及其与上消化道症状关联的逆向方法
  • 批准号:
    10394942
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2020
  • 资助金额:
    $ 4.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了